思思热免费在线视频观看|欧美国产精品一级|精品亚洲一区二区|真实国产乱子伦对白视频

<b id="w545d"><legend id="w545d"></legend></b>
<blockquote id="w545d"></blockquote>
    1. <thead id="w545d"></thead>
        首頁 申請(qǐng)書推薦信邀請(qǐng)函通知工作總結(jié)工作計(jì)劃策劃書工作報(bào)告合同演講稿職業(yè)規(guī)劃
        當(dāng)前位置:98158范文網(wǎng)>教育范文>教學(xué)反思>因數(shù)和倍數(shù)教學(xué)反思

        因數(shù)和倍數(shù)教學(xué)反思

        時(shí)間:2024-10-19 00:47:05 教學(xué)反思 我要投稿

        因數(shù)和倍數(shù)教學(xué)反思15篇

          身為一名剛到崗的人民教師,我們要有很強(qiáng)的課堂教學(xué)能力,通過教學(xué)反思可以快速積累我們的教學(xué)經(jīng)驗(yàn),那么教學(xué)反思應(yīng)該怎么寫才合適呢?以下是小編整理的因數(shù)和倍數(shù)教學(xué)反思,僅供參考,歡迎大家閱讀。

        因數(shù)和倍數(shù)教學(xué)反思15篇

        因數(shù)和倍數(shù)教學(xué)反思1

          《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級(jí)下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識(shí)點(diǎn)較多,內(nèi)容較為抽象,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運(yùn)用“先學(xué)后教”的模式,達(dá)到課堂的高效,在課堂中我做了以下的嘗試。

          一、領(lǐng)會(huì)意圖,做到用教材教。

          我覺得作為一名教師,重要的是領(lǐng)會(huì)教材的編寫意圖,靈活的運(yùn)用教材,讓每個(gè)細(xì)節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架;3行飛機(jī),每行4架)引出了要研究的兩個(gè)乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。

          但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機(jī),你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個(gè)算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個(gè)數(shù)的因數(shù)”的方法的滲透和引導(dǎo)?磥盱`活的運(yùn)用教材,深放領(lǐng)會(huì)意圖,才能使教學(xué)更為輕松、高效!

          二、模式運(yùn)用,做到靈活自然。

          模式是一種思想或是引子,面對(duì)不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗(yàn),使模式不再是僵化的,機(jī)械的。只要是能促進(jìn)學(xué)生能力形成的.東西,我們不能因?yàn)橐\(yùn)用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。

          如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計(jì)已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識(shí)的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進(jìn)入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計(jì)出兩個(gè)“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對(duì)比著去感受一個(gè)數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對(duì)知識(shí)的理解,同時(shí)也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!

        因數(shù)和倍數(shù)教學(xué)反思2

          教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時(shí)做了一些改動(dòng),讓學(xué)生用12個(gè)小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因?yàn)楝F(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動(dòng)的接受。如讓學(xué)生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對(duì)乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗(yàn),因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識(shí)了倍數(shù)之后,我進(jìn)行了設(shè)問:12是3的倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會(huì)到12是3的'倍數(shù),反過來3就是12的因數(shù),接下來4和12的關(guān)系,學(xué)生都爭者要回答。

          如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對(duì)自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。

        因數(shù)和倍數(shù)教學(xué)反思3

          《倍數(shù)和因數(shù)》,由于之前沒上過這冊內(nèi)容,在看完教材后就和同組的老師說,這個(gè)內(nèi)容好像挺簡單的。不過上完這節(jié)課后這個(gè)想法卻煙消云散,根本沒有想象的那么容易上,而且在課堂中存在了很多在預(yù)設(shè)中沒有想到的問題,下面對(duì)自己的課堂做一些反思:

          1.在第一個(gè)環(huán)節(jié)認(rèn)識(shí)倍數(shù)和因數(shù)的意義中,首先讓學(xué)生用12個(gè)同樣大小的小正方形擺成一個(gè)長方形,并用乘法算式來表示你是怎么擺的,有幾種不同的擺法?通過讓學(xué)生動(dòng)手操作實(shí)踐,體現(xiàn)了以學(xué)生為本,而且能喚醒學(xué)生已有的知識(shí)經(jīng)驗(yàn),抽象為具體討論的數(shù)學(xué)問題。在抽象出三個(gè)不同的乘法算式后,我以第一個(gè)乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關(guān)系,本來以為說:“4和3是12的因數(shù),12是4和3的倍數(shù)”應(yīng)該是很簡單的.兩句話,學(xué)生應(yīng)該會(huì)說,可是當(dāng)請(qǐng)學(xué)生來自己選擇一個(gè)乘法算式來說一說時(shí),好幾個(gè)學(xué)生卻被卡住了,還有的說成了4是12的倍數(shù)。

          針對(duì)學(xué)生出現(xiàn)的問題,我覺得可能是自己在介紹時(shí)運(yùn)用的不到位,一個(gè)是比較小,后面的同學(xué)都沒能看清楚;另一方面我預(yù)想的比較簡單,所以說了一遍后也沒請(qǐng)學(xué)生再復(fù)述一遍。在說到“誰是誰的倍數(shù),誰是誰的因數(shù)”時(shí)應(yīng)該在中相繼出示這兩句話,這樣的話讓學(xué)生看著說印象會(huì)更深刻,相信學(xué)生說的也會(huì)比較好。

          2。第二個(gè)環(huán)節(jié)是探求找一個(gè)數(shù)的倍數(shù)的方法,從上一個(gè)環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過疑問來激發(fā)學(xué)生找出3的倍數(shù)有哪些?學(xué)生很快能找到,但是并沒有找全,于是再問,那又什么辦法把3的倍數(shù)找全呢?學(xué)生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問學(xué)生:觀察上面這幾個(gè)例子,你有什么發(fā)現(xiàn)?請(qǐng)了好幾個(gè)學(xué)生都沒能找到,最后還是老師告訴了學(xué)生倍數(shù)最小是?最大呢?

          針對(duì)最后請(qǐng)學(xué)生找一找發(fā)現(xiàn)倍數(shù)的共同特點(diǎn)這一問題,我覺得我在設(shè)計(jì)時(shí)問題提得太大,太籠統(tǒng)。學(xué)生聽到問題后可能無從下手,不知道該找什么?梢詥枺簞偛耪伊2,3,5的倍數(shù),觀察這幾個(gè)數(shù)的倍數(shù),他們有什么共同特點(diǎn)?這樣學(xué)生就會(huì)比較有針對(duì)性地去尋找結(jié)果。

          3。第三個(gè)環(huán)節(jié)是探求找一個(gè)數(shù)因數(shù)的方法,找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),如何做到既不重復(fù)又不遺漏地找一個(gè)數(shù)的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來說有是一定困難的,而這個(gè)環(huán)節(jié)我處理的也不到位,學(xué)生對(duì)找一個(gè)數(shù)因數(shù)的方法掌握的不夠好。

          我一開始設(shè)計(jì)請(qǐng)學(xué)生自主找36的因數(shù),在巡視時(shí)發(fā)現(xiàn)有一部分學(xué)生沒有頭緒,無從下手,時(shí)間倒是花去了不少。所以我覺得是否可以先從12下手,因?yàn)榍懊嬉婚_始已經(jīng)找過12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的因數(shù)時(shí)就會(huì)好一些。

          在學(xué)生自主探索完36的因數(shù)有哪些后,交流不同學(xué)生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問你是怎么找到的?學(xué)生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實(shí)這里除了用除法來找之外,還可以用乘的方法來找,而乘的方法似乎對(duì)于學(xué)生來說在找得時(shí)候還更簡單一點(diǎn)。更重要的是我覺得一對(duì)對(duì)的找對(duì)于找全一個(gè)數(shù)的因數(shù)是一個(gè)很重要的方法,而我卻把這個(gè)方法忽略了,所以學(xué)生對(duì)于找一個(gè)數(shù)的因數(shù)的方法不夠深刻,在練習(xí)中也發(fā)現(xiàn)做的不理想。

          4。第四個(gè)環(huán)節(jié)是鞏固練習(xí),我設(shè)計(jì)了2個(gè)小游戲。一個(gè)是看誰反應(yīng)快,符合要求的請(qǐng)學(xué)生起立,這個(gè)游戲?qū)W生參與面廣,學(xué)生也感興趣,還從中發(fā)現(xiàn)了找誰的學(xué)號(hào)是幾的因數(shù),1每次都會(huì)起立,就更好的鞏固了一個(gè)數(shù)的因數(shù)最小是1。但是也有個(gè)別學(xué)生反應(yīng)比較慢。第二個(gè)小游戲是猜一猜老師的手機(jī)號(hào)碼是多少?但是由于前面時(shí)間用的比較多,所以沒來得及做。

          原本認(rèn)為簡單的課卻一點(diǎn)都不簡單,每個(gè)細(xì)小環(huán)節(jié)的把握都要求我去仔細(xì)的鉆研教材,設(shè)計(jì)好每一步,這樣才能上好一節(jié)課。

        因數(shù)和倍數(shù)教學(xué)反思4

          在本節(jié)課中,我加強(qiáng)了操作,讓學(xué)生通過動(dòng)手拼12個(gè)小正方形為長方形,經(jīng)歷操作活動(dòng)可以喚醒學(xué)生相關(guān)的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),幫助學(xué)生在操作的過程中有意識(shí)地感受1和12、2和6、3和4這幾組數(shù)和12之間的有機(jī)聯(lián)系,為隨后學(xué)生有意義學(xué)習(xí)倍數(shù)和因數(shù)的概念打下基礎(chǔ)。

          找一個(gè)數(shù)的因數(shù)是本節(jié)課的一個(gè)難點(diǎn),學(xué)生通過寫乘法算式和出發(fā)算式,感受到因數(shù)是成對(duì)出現(xiàn)的`,同時(shí)要求學(xué)生在寫一個(gè)數(shù)的因數(shù)時(shí),一前一后成對(duì)地寫出來,寫好以后是一串從小到大排列的數(shù),從而做到有序、不重復(fù)、不遺漏。而對(duì)于總結(jié)一個(gè)數(shù)倍數(shù)和因數(shù)的特征及其個(gè)數(shù)時(shí),則引導(dǎo)學(xué)生自己通過觀察來感悟,學(xué)生學(xué)習(xí)的主動(dòng)性和創(chuàng)造性得到了較好的體現(xiàn)。

          我在課上對(duì)于認(rèn)識(shí)因數(shù)和倍數(shù)的教學(xué)所花的時(shí)間比較多,雖然也完成了教學(xué)任務(wù),但是“想想做做”沒來得及完成,十分遺憾。

        因數(shù)和倍數(shù)教學(xué)反思5

          一、教材與知識(shí)點(diǎn)的對(duì)比與區(qū)別。

          1、對(duì)比新版教材知識(shí)設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識(shí)是傳統(tǒng)教學(xué)內(nèi)容但教材在傳承以往優(yōu)秀做法的同時(shí)也進(jìn)行了較大幅度的改動(dòng)。無論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計(jì)上都獨(dú)具匠心!耙驍(shù)與倍數(shù)”的認(rèn)識(shí)與原教材有以下兩方面的區(qū)別1新課標(biāo)教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學(xué)習(xí)而是反其道而行之通過乘法算式來導(dǎo)入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在教師必須要認(rèn)真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學(xué)習(xí)教參了解到以下信息學(xué)生的原有知識(shí)基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對(duì)整除的含義有比較清楚的認(rèn)識(shí)不出現(xiàn)整除的定義并不會(huì)對(duì)學(xué)生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學(xué)化定義。

          2、相似概念的對(duì)比。1彼“因數(shù)”非此“因數(shù)”。在同一個(gè)乘法算式中兩者都是指乘號(hào)兩邊的整數(shù)但前者是相對(duì)于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對(duì)于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時(shí)兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣。我們可以說“1.5是0.3的5倍”但不能說”1.5是0.3的倍數(shù)”。我們在求一個(gè)數(shù)的倍數(shù)時(shí)運(yùn)用的方法與“求一個(gè)數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。

          二、教法的運(yùn)用實(shí)踐

          1、“因數(shù)與倍數(shù)”概念的數(shù)的'應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對(duì)與本知識(shí)點(diǎn)的概念是人為規(guī)定的一個(gè)范圍因此對(duì)于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求而且給學(xué)生一個(gè)直觀的感受。“因數(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無關(guān)與分?jǐn)?shù)無關(guān)與負(fù)數(shù)無關(guān)雖沒學(xué)但有小部分學(xué)生了解。同時(shí)強(qiáng)調(diào)——非0——因?yàn)?乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗(yàn)就是對(duì)于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法讓學(xué)生清晰明確。因此用直接導(dǎo)入法先復(fù)習(xí)自然數(shù)的概念再寫出乘法算式3×4=12說明在這個(gè)算式中3和4是12的因數(shù)12是3和4的倍數(shù)。

          2、在進(jìn)行延續(xù)性教學(xué)中可以讓學(xué)生探究怎么樣找一個(gè)數(shù)的因數(shù)和倍數(shù)在板書要講究一個(gè)格式與對(duì)稱性這樣在對(duì)學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個(gè)數(shù)的有限與無限的對(duì)比再就是發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。

          【篇三:因數(shù)和倍數(shù)2教學(xué)反思】

          因數(shù)和倍數(shù)是五年級(jí)下冊第二單元的教學(xué)內(nèi)容,由于知識(shí)較為抽象,學(xué)生不易理解,因此我在教學(xué)時(shí)做到了以下幾點(diǎn):

         。1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。

          今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對(duì)語言的概括能力和對(duì)事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識(shí)倍數(shù)與因數(shù)的關(guān)系,

         。2)改動(dòng)呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動(dòng)的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的`關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

          (3)根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個(gè)數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會(huì)有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。

         。4)設(shè)計(jì)有趣游戲活動(dòng),擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號(hào)數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學(xué)生的學(xué)號(hào)數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個(gè)辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對(duì)問題積極思考,享受了數(shù)學(xué)思維的快樂。

        因數(shù)和倍數(shù)教學(xué)反思6

          1、立足于學(xué)生的思維特點(diǎn)。中年級(jí)學(xué)生的思維特點(diǎn)是由具體形象思維到抽象概括思維過渡的重要年齡段。因此,我放棄了用12個(gè)小正方形擺長方形的動(dòng)手實(shí)踐活動(dòng),而選用了看12個(gè)小正方形在腦中想象擺法。在留有短暫時(shí)間讓學(xué)生思考,腦中逐漸有了長方形的圖象紛紛舉手之后,我又不急于提問,而是追問:你能不能用一道乘法算式來表示?當(dāng)學(xué)生說出乘法算式時(shí),也不急于就此,還讓其余同學(xué)想想他是如何擺的,做到全員參與。這種由形象到抽象,再由抽象到形象的過程,是符合學(xué)生的思維特點(diǎn)的,對(duì)于發(fā)展學(xué)生的抽象概括思維是有利的。

          2、層層輔墊,為學(xué)生自主探索打下了堅(jiān)實(shí)的基礎(chǔ)。探索36的所有因數(shù)是本節(jié)課的重難點(diǎn),我在這之前做了層層的輔墊。

         。1)3個(gè)乘法算式的呈現(xiàn)我作了調(diào)整:1×12=12,2×6=12,3×4=12。潛移默化的影響學(xué)生的有序思考。

         。2)在學(xué)生根據(jù)其余兩算式說因數(shù)和倍數(shù)的關(guān)系之后,我對(duì)12的所有因數(shù)進(jìn)行了小結(jié):12的因數(shù)有1,12,2,6,3,4。讓學(xué)生感受到一道乘法算式中蘊(yùn)藏著兩個(gè)因數(shù)。

         。3)36這個(gè)數(shù)比較大,學(xué)生找起36的所有因數(shù)時(shí)有點(diǎn)困難,我設(shè)計(jì)了從3,5,18,20,36五個(gè)數(shù)中選擇兩個(gè)數(shù)來說說誰是誰的因數(shù),誰是誰的倍數(shù)?這一教學(xué)環(huán)節(jié),減輕了學(xué)生的困難,同時(shí)也能檢驗(yàn)學(xué)生對(duì)因數(shù)和倍數(shù)概念是否已正確認(rèn)識(shí)。當(dāng)學(xué)生會(huì)說3是36的因數(shù),36是3的倍數(shù)時(shí),說明他們腦中已經(jīng)有了判斷的依據(jù):3×12=36。

          (4)在學(xué)生獨(dú)立探索前,我又提醒學(xué)生,在找36的所有因數(shù)時(shí),如果遇到困難,不要忘了我們已經(jīng)尋找過12這個(gè)數(shù)的所有因數(shù),可以作為參考。

          這四個(gè)方面的準(zhǔn)備,學(xué)生的獨(dú)立思考才有了思維的依托,遇到困難,他們就會(huì)自我想辦法,自我解決問題,這樣的探索就會(huì)有效,不會(huì)浮于表面,流于形勢。

          3、有層次的呈現(xiàn)作業(yè),給學(xué)生以正面引導(dǎo)為主。在概括總結(jié)找36所有因數(shù)的方法時(shí),我找了三份的作業(yè),第一份是有序,成對(duì)思考的1,36,2,18,3,12,4,9,6。在交流中讓學(xué)生明確只有有序的,成對(duì)的思考才會(huì)做到既不遺漏,又能快捷方便,第二份作業(yè)是所有的因數(shù)按順序排列的1,2,3,4,6,9,12,18,36。結(jié)果作業(yè)中漏了一個(gè)4,這是個(gè)時(shí)機(jī),在表揚(yáng)了這個(gè)學(xué)生能按順序的排列,做到美觀這個(gè)優(yōu)點(diǎn)之后,提出問題:美中不足的是什么?學(xué)生:一個(gè)一個(gè)找麻煩,還容易丟。我接著追問;我們能給他提些建議嗎?第三份是無序的有遺漏的,也讓學(xué)生給他提建議,讓他也能做到一個(gè)不漏。這三份作業(yè)對(duì)比下來,先教給學(xué)生正確的思考方法,再以正確的方法判斷其他同學(xué)思考不當(dāng)?shù)牡胤,并提出建議。尋找一個(gè)數(shù)所有因數(shù)的.方法也能深刻地印在學(xué)生腦里。

          4、大膽放手,產(chǎn)生矛盾沖突,發(fā)現(xiàn)問題,想辦法解決問題。在找3的倍數(shù)時(shí),我想學(xué)生有了前面的學(xué)習(xí)基礎(chǔ),我直接拋出問題:你能像上面這樣有序的從小到大的找出3的倍數(shù)嗎?學(xué)生在找中發(fā)現(xiàn):3的倍數(shù)有很多,寫不完。我追問;那怎么辦,有辦法嗎?通過一會(huì)兒的沉默思考后,紛紛有學(xué)生提出省略號(hào)。

          5、趣味練習(xí),聯(lián)想,探索。練習(xí)中我設(shè)計(jì)了兩道題,一是猜我的電話號(hào)碼,激發(fā)起學(xué)生的興趣,二是探索計(jì)數(shù)器的奧秘,多位老師問起我的設(shè)計(jì)意圖,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個(gè)體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉,牛頓看到蘋果落地,通過聯(lián)想,最終發(fā)現(xiàn)了萬有引力定律,瓦特看到茶壺里冒出蒸氣,通過聯(lián)想,最終發(fā)明了蒸氣機(jī)…這與一個(gè)人的認(rèn)真觀察,善于聯(lián)想,勇于探索是分不開的。

        因數(shù)和倍數(shù)教學(xué)反思7

          開學(xué)后上第一節(jié)課年級(jí)組教研課,挺有壓力的。畢竟放了這么久的假,感覺有點(diǎn)不習(xí)慣,好象字都寫不穩(wěn)一樣。還好,上完課后感覺還可以。

          因數(shù)和倍數(shù)是一堂概念課。老教材是先建立整除的概念,在整除的基礎(chǔ)上教學(xué)因數(shù)與倍數(shù)的,而新教材沒有提到整除。教學(xué)前,我是先讓學(xué)生進(jìn)行了預(yù)習(xí),開課伊始,就揭示課題,讓學(xué)生談自己對(duì)因數(shù)與倍數(shù)的理解。學(xué)生結(jié)合一個(gè)乘法算“3×4=12”入手,介紹因數(shù)與倍數(shù)概念,這樣有助于更好理解,也能節(jié)約很多時(shí)間。學(xué)生的`學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動(dòng)起來了,主動(dòng)參與到了知識(shí)的學(xué)習(xí)中去了。

          能不重復(fù)、不遺漏找出一個(gè)數(shù)的因數(shù)是本課的難點(diǎn),絕大部分學(xué)生都能仿照找12的因數(shù)去找,孩子都能一對(duì)一對(duì)的找,可遺漏的多,在這里我強(qiáng)調(diào)按順序找,也就是從“1”開始,依次找,這樣效果很好。

          為了得出因數(shù)的特點(diǎn),我出了“24的因數(shù),36的因數(shù),18的因數(shù)”,并認(rèn)真觀察這些因數(shù)看有什么發(fā)現(xiàn),由于時(shí)間不夠,我只要求孩子從因數(shù)的個(gè)數(shù),最小,最大的因數(shù)考慮,沒有對(duì)質(zhì)數(shù),合數(shù),公因數(shù)進(jìn)行滲透。找一個(gè)數(shù)的倍數(shù)因?yàn)榉椒ū容^易于掌握,沒有過多的練習(xí),二是激發(fā)他們想象一個(gè)數(shù)的倍數(shù)有什么特點(diǎn)。

          針對(duì)這節(jié)課,課后老師們就這堂課認(rèn)真評(píng)析,真誠的說出自己的觀點(diǎn),特別就知識(shí)的生長點(diǎn)、教學(xué)的重難點(diǎn)展開了討論,特別是找一個(gè)數(shù)的因數(shù),應(yīng)注重方法的指導(dǎo)。由此,我們數(shù)學(xué)課堂教學(xué)應(yīng)注意一下幾點(diǎn):知識(shí)的滲透點(diǎn)、練習(xí)發(fā)展點(diǎn)、層次切入點(diǎn)、設(shè)計(jì)巧妙點(diǎn)、教法多樣點(diǎn)、語言動(dòng)聽點(diǎn)、管理到位點(diǎn)、應(yīng)變靈活點(diǎn)。

          這幾點(diǎn)既是目標(biāo)也是方向,相信我們在新的一學(xué)期,團(tuán)結(jié)協(xié)作,勤奮務(wù)實(shí),努力朝著目標(biāo)前進(jìn)。

        因數(shù)和倍數(shù)教學(xué)反思8

          簡單的內(nèi)容中蘊(yùn)藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時(shí),對(duì)于求一個(gè)數(shù)的因數(shù),及理解一個(gè)數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,感覺很清楚,明白。在學(xué)倍數(shù)時(shí),對(duì)求一個(gè)數(shù)的`倍數(shù)及理解一個(gè)數(shù)的倍數(shù)中最小的是它本身,沒有最大的倍數(shù)也認(rèn)為容易簡單,但有關(guān)因數(shù)、倍數(shù)的綜合練習(xí)不少學(xué)生開始猶豫、混淆。如判斷一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是無限的,不少學(xué)生判斷為對(duì)。練習(xí)中:18是的倍數(shù),個(gè)別學(xué)生選擇了18、36、54……。針對(duì)這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個(gè)問題:

          1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。

          2、觀察比較,會(huì)打消列問題:一個(gè)數(shù)的因數(shù)和它本身的關(guān)系,

          3、為什么一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的?最小是它本身,沒有最大的。

          通過對(duì)這幾個(gè)問題的討論,多數(shù)學(xué)生較好的區(qū)分了一個(gè)數(shù)的因數(shù)和倍數(shù)

        因數(shù)和倍數(shù)教學(xué)反思9

          因數(shù)與倍數(shù)屬于數(shù)論中的知識(shí),是比較抽象的,學(xué)生學(xué)習(xí)理解起來有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認(rèn)識(shí)了乘法各部分名稱,對(duì)“倍”葉有了初步的'認(rèn)識(shí),從而本課由此入手,讓學(xué)生由熟悉的知識(shí)經(jīng)驗(yàn)開始,結(jié)合問題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的知識(shí)結(jié)構(gòu),體會(huì)到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。

          在探索找一個(gè)數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會(huì)出“要按照一定的順序去找”才不會(huì)遺漏和重復(fù),本課制作了動(dòng)態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動(dòng)),2、9(閃動(dòng)),3、6(閃動(dòng))學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時(shí)觀察區(qū)間,真正體會(huì)到了“找前了”這一學(xué)生難以真正理解的地方。

          本課中還要注意到的就是學(xué)生在匯報(bào)找到了哪些數(shù)的因數(shù)時(shí),教師根據(jù)學(xué)生匯報(bào)所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時(shí)學(xué)生還不知道這些數(shù)的概念,但這時(shí)給學(xué)生一個(gè)全面的正面印象,有的數(shù)因數(shù)個(gè)數(shù)多,有的少,不是一個(gè)數(shù)越大因數(shù)的個(gè)數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。

        因數(shù)和倍數(shù)教學(xué)反思10

          今天這堂課其實(shí)是有點(diǎn)匆忙的。課前的一個(gè)小游戲忘了,忘了讓學(xué)生體會(huì)因數(shù)和倍數(shù)之間的相互聯(lián)系和依存關(guān)系了。明天的課上補(bǔ)上。

          滿意的一點(diǎn):模式的提練

          在讓學(xué)生根據(jù)算式說了誰是誰的倍數(shù),誰是誰的因數(shù)之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學(xué)生用一道算式提練出因數(shù)和倍數(shù)之間的關(guān)系。結(jié)果學(xué)生都不知道如何表達(dá)。我把算式板書上黑板上,是因數(shù)×因數(shù)=倍數(shù)。而后,我又轉(zhuǎn)過去用一道除法算式36÷9=4來讓學(xué)生找一找誰是誰的因數(shù),誰是誰的倍數(shù),學(xué)生的反應(yīng)都不錯(cuò),馬上就明白了因數(shù)和倍數(shù)之間的關(guān)系。

          不滿意的地方在于:對(duì)于找出36所有因數(shù)的有序思考沒有強(qiáng)調(diào)。當(dāng)我讓學(xué)生們自主找出36的所有因數(shù)時(shí),許多學(xué)生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫,所以我在黑板上挑選了一些學(xué)生的作業(yè)加以板書,讓學(xué)生進(jìn)行比較。

          如:1、36、2、18、3、12、4、9、6

         。薄ⅲ、3、4、6、9、12、18、36

          和36÷1=36,36÷2=18,36÷3=12

          36÷4=9,36÷6=6

          尤其是最后一種方法,我特別注意讓學(xué)生評(píng)價(jià)一下這種思考方法的正確性。得出結(jié)論是這樣思考是可行的。那么我接著告訴他們,這樣思考的確是可以,不過,缺少的因數(shù)的提取,由此過渡到評(píng)價(jià)第一種方案和第二種方案,在這兒,我特別示范了一下寫因數(shù)的方法,即從兩邊向中間包圍。學(xué)生們在比較中找出了寫因數(shù)的方法,明白了寫出因數(shù)的格式。本來可以相機(jī)在這一步讓學(xué)生體會(huì)尋找因數(shù)的有序性,結(jié)果一急,只是帶過了一句。今天在補(bǔ)充習(xí)題上出現(xiàn)了問題,我抓了幾個(gè)學(xué)生問為什么強(qiáng)調(diào)有序性,學(xué)生告訴我:因?yàn)榭梢钥吹们宄,因(yàn)椴粫?huì)遺漏?雌饋戆嗌系膶W(xué)生有這方面的意識(shí),在做題目的時(shí)候還應(yīng)該再稍稍提點(diǎn)一下,應(yīng)該也就不成問題了。

          《因數(shù)和倍數(shù)的練習(xí)》教學(xué)反思 4月14日

          昨天新學(xué)了因數(shù)和倍數(shù),我覺得課上學(xué)生表現(xiàn)還可以,很會(huì)說,但到了家自己做家作時(shí),問題很多。今天進(jìn)行了練習(xí)后,效果截然不同。我在練習(xí)前,首先對(duì)昨天的`內(nèi)容進(jìn)行了復(fù)習(xí)。讓學(xué)生進(jìn)一步明確:1、講因數(shù)和倍數(shù)時(shí)應(yīng)該講清誰是誰的倍數(shù)或因數(shù)。2、找一個(gè)數(shù)的倍數(shù)和因數(shù)時(shí),倍數(shù)最小的是它本身,其它都比它大,因數(shù)最大的是它本身,其它都比它小,最小是1。學(xué)生書上練習(xí)時(shí),提醒學(xué)生弄清每題的具體要求,有些題只要寫出一個(gè)數(shù)部分的倍數(shù),而有些題需要寫出全部的倍數(shù)。有些符合要求的數(shù)不止1個(gè),要盡可能把這些數(shù)都找出來。但學(xué)生有時(shí)找不全,我就教會(huì)學(xué)生這樣思考:找一個(gè)數(shù)的倍數(shù)時(shí)用乘法,找一個(gè)數(shù)的因數(shù)時(shí)用除法。效果還可以。

          今天教學(xué)了因數(shù)和倍數(shù)一課,這節(jié)課的內(nèi)容關(guān)鍵是讓學(xué)生在掌握因數(shù)、倍數(shù)的概念的基礎(chǔ)上學(xué)會(huì)找一個(gè)數(shù)的因數(shù)和倍數(shù)。就總體情況而言教學(xué)效果還可以,但多少還是存在遺憾。

          存在問題:在寫出了算式3*4=12后出示“3是12的因數(shù),4也是12的因數(shù);12是3的倍數(shù),12也是4的倍數(shù)!焙笞寣W(xué)生閱讀,復(fù)述后讓學(xué)生觀察尋找記憶的方法,學(xué)生總結(jié):像這樣的乘法算式我們可以說兩個(gè)乘數(shù)都是積的因數(shù),積是兩個(gè)乘數(shù)的倍數(shù)。再讓學(xué)生用因數(shù)、倍數(shù)同桌復(fù)述算式2*6=12,1*12=12中數(shù)與數(shù)的關(guān)系,全班交流復(fù)述,學(xué)生說的蠻好的,可是在分層練習(xí)時(shí)再讓學(xué)生描述其他算式中各數(shù)的關(guān)系時(shí),又部分學(xué)生混淆了因數(shù)、倍數(shù)的概念?磥黹_始的復(fù)述學(xué)生純粹是無意識(shí)的模仿,是為模仿而模仿,教師沒有在學(xué)生模仿復(fù)述后進(jìn)一步讓學(xué)生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說12是2和6的倍數(shù)?……如果加了這層思考,學(xué)生就會(huì)理解只要是兩個(gè)整數(shù)相乘等于12,12就是這兩個(gè)整數(shù)的倍數(shù),這兩個(gè)整數(shù)就都是12的因數(shù)。這樣才能讓學(xué)生真正理解乘法算式中各整數(shù)之間的關(guān)系。

          滿意之處:學(xué)生在找一個(gè)數(shù)的因數(shù)和倍數(shù)時(shí)花費(fèi)的時(shí)間不多,但在交流方法時(shí)我舍得花費(fèi)較多的時(shí)間讓學(xué)生比較各自的方法,在此基礎(chǔ)上選出不會(huì)重復(fù)、遺漏的簡便方便用學(xué)生的名字命名這些方法。再讓學(xué)生分別使用這些方法尋找,真實(shí)感受這些方法的好處。學(xué)生郵箱比較深刻,在后面的分層練習(xí)和檢測中沒有學(xué)生出現(xiàn)漏或重復(fù)的,而且速度也很快。學(xué)生的積極性很高,學(xué)生的積極性的大小與他獲得成功的概率的大小有直接關(guān)系的。

        因數(shù)和倍數(shù)教學(xué)反思11

          因區(qū)領(lǐng)導(dǎo)要來調(diào)研,我們四年級(jí)幾位數(shù)學(xué)老師經(jīng)商量決定,都上《倍數(shù)和因數(shù)》,都覺得這個(gè)內(nèi)容挺簡單的。今天上午第一節(jié)課,領(lǐng)導(dǎo)進(jìn)了我的教室聽了我上這一課。上完這課,之前的那個(gè)想法就煙消云散了,根本沒有想象的那么容易上。下面對(duì)自己的課堂做一些反思。

          新授的第一個(gè)教學(xué)環(huán)節(jié)是認(rèn)識(shí)倍數(shù)和因數(shù)的意義,原本我想讓每位學(xué)生準(zhǔn)備12個(gè)同樣大小的小正方形擺長方形的,再一想,都四年級(jí)的學(xué)生了,不需要操作了,而且,操作這一過程可以節(jié)省不少時(shí)間,本來這節(jié)課就時(shí)間很緊。沒想到,學(xué)生在心中拼一個(gè)長方形后,說乘法算式時(shí)疙里疙瘩的,語言表述不流暢,看來是學(xué)生缺乏操作體驗(yàn)的緣故吧。至于,認(rèn)識(shí)因數(shù)和倍數(shù)的意義,并熟練地說,這些學(xué)生都掌握很好,只是,不知怎么搞的,我竟然把“能說5是因數(shù),12是因數(shù),60是倍數(shù)嗎?”這個(gè)問題給忘記了,這樣,無形中淡化了需強(qiáng)調(diào)的“倍數(shù)和因數(shù)之間的關(guān)系”,不出我所料,在下午的反饋中,專家真指出了這一點(diǎn)。

          第二環(huán)節(jié)是探求找一個(gè)數(shù)的因數(shù)的方法,找一個(gè)數(shù)的因數(shù)的方法是本節(jié)課的重點(diǎn),也是難點(diǎn)。根據(jù)教材編排的話,應(yīng)該先找倍數(shù)的。我考慮到突出重點(diǎn)、突破難點(diǎn),我就做了調(diào)整,再說,之前,我查閱了好多資料,也有不少老師認(rèn)為先因數(shù)比較合理,因此,我的決定就更加堅(jiān)定了。在認(rèn)識(shí)了因數(shù)和倍數(shù)的意義的基礎(chǔ)上,我放手讓學(xué)生自己找36的因數(shù),然后讓學(xué)生發(fā)言交流找的方法,學(xué)生真的很努力很拎的清,見有領(lǐng)導(dǎo)聽課,竟然發(fā)揮出色,表現(xiàn)的相當(dāng)?shù)恼鎸?shí),也相當(dāng)?shù)某錾,大膽地說出自己的所思所想,學(xué)生的回答給人的感覺是那么自然,那么真實(shí),沒有一點(diǎn)矯揉造作。在下午的反饋中,專家夸我的課真實(shí)、樸實(shí)、實(shí)在,我想這應(yīng)歸功于我的.學(xué)生們,是他們的樸實(shí)、實(shí)在感染了我。然而,我在這個(gè)環(huán)節(jié)設(shè)計(jì)的問題有點(diǎn)籠統(tǒng),不到位,導(dǎo)致有幾處的問話重復(fù),最終導(dǎo)致本課時(shí)間不夠,這是我本節(jié)課最大的遺憾。第三環(huán)節(jié)是探求找一個(gè)數(shù)的倍數(shù)的方法,這里,我又一次偷懶,我完全放手讓學(xué)生來完成,結(jié)果學(xué)生們真的無師自通,很快就找到了方法,并有了很多發(fā)現(xiàn),相當(dāng)有價(jià)值,學(xué)生學(xué)習(xí)的主動(dòng)性在這堂課中得到了很好的體現(xiàn)。

          由此,讓我明白,學(xué)生真的不可以小看,他們真的很厲害。但有一點(diǎn),歸功于我,他們的大膽是我在近一年的時(shí)間中不斷訓(xùn)練的成果。

        因數(shù)和倍數(shù)教學(xué)反思12

          這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):

          一、尊重教材,引導(dǎo)學(xué)生實(shí)現(xiàn)從形象向抽象的飛躍。

          教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。

          這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)?指導(dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,

          二、細(xì)化過程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。

          倍數(shù)和因數(shù)的意義是本單元的重要知識(shí),其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會(huì)12也是4的倍數(shù),指名說后,再強(qiáng)化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時(shí)你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時(shí)再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點(diǎn)特別的兩句。

          整個(gè)過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時(shí)、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。

          三、由點(diǎn)及面,巧架平臺(tái),讓學(xué)生在師生互動(dòng)中建立完整的數(shù)學(xué)模型。

          找一個(gè)數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個(gè)數(shù)的倍數(shù)或因數(shù)的方法時(shí),重點(diǎn)是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。

          探索求一個(gè)數(shù)因數(shù)的方法是本課的難點(diǎn),例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個(gè)數(shù)的因數(shù)的方法。

          教學(xué)4的倍數(shù)時(shí),學(xué)生在4×4=16的鋪墊下,很容易找到一個(gè)或幾個(gè)4的倍數(shù),但是想要“一個(gè)不漏且有序的找全,并體會(huì)出4的倍數(shù)的個(gè)數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點(diǎn)逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。

          這樣搭建了有效的平臺(tái)、形成了師生互動(dòng)生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點(diǎn)及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。

        因數(shù)和倍數(shù)教學(xué)反思13

          《公倍數(shù)和公因數(shù)》在新教材中改動(dòng)很大,新教材將數(shù)的整除中有關(guān)分解質(zhì)因數(shù)、互質(zhì)數(shù)、用短除法求幾個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)的教學(xué)內(nèi)容精簡掉了,新教材突出了讓學(xué)生在現(xiàn)實(shí)情境中探究認(rèn)識(shí)公倍數(shù)和最小公倍數(shù),公因數(shù)和最大公因數(shù),突出了運(yùn)用數(shù)學(xué)概念,讓學(xué)生探索找兩個(gè)數(shù)的最小公倍數(shù)、最大公因數(shù)的方法,注重讓學(xué)生在解決問題的過程中,主動(dòng)探索簡潔的方法,進(jìn)行有條理的思考,加強(qiáng)了數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。教學(xué)以后與以前的教材相比,主要的體會(huì)有以下幾點(diǎn)。

          一是在現(xiàn)實(shí)的情境中教學(xué)概念,讓學(xué)生通過操作領(lǐng)會(huì)公倍數(shù)、公因數(shù)的含義。例1教學(xué)公倍數(shù)和最小公倍數(shù),例3教學(xué)公因數(shù)和最大公因數(shù),都是形成新的數(shù)學(xué)概念,都讓學(xué)生在操作活動(dòng)中領(lǐng)會(huì)概念的含義。學(xué)生通過操作活動(dòng),感受公倍數(shù)和公因數(shù)的實(shí)際背景,縮短了抽象概念與學(xué)生已有知識(shí)經(jīng)驗(yàn)之間的距離,有利于學(xué)生運(yùn)用公倍數(shù)、最小公倍數(shù)、公因數(shù)和最大公因數(shù)的知識(shí)解決實(shí)際問題。

          二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在教學(xué)中,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用怎樣的長方形可以正好鋪滿一個(gè)正方形;用邊長幾厘米的正方形可以正好鋪滿一個(gè)長方形。在對(duì)所發(fā)現(xiàn)的不同的結(jié)果的過程中,引導(dǎo)學(xué)生聯(lián)系除法算式進(jìn)行思考,對(duì)直觀操作活動(dòng)進(jìn)行初步的抽象。再把初步發(fā)現(xiàn)的結(jié)論進(jìn)行類推,在此基礎(chǔ)上,引導(dǎo)學(xué)生思考正方形的邊長與長方形的長和寬有什么關(guān)系,再揭示公倍數(shù)和公因數(shù),最小公倍數(shù)與最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合等圖式,顯示公倍數(shù)與公因數(shù)的意義。讓學(xué)生經(jīng)歷了概念的形成過程。

          三是刪掉了一些與學(xué)生實(shí)際聯(lián)系不夠緊密、對(duì)后繼學(xué)習(xí)沒有影響的內(nèi)容后,確實(shí)減輕了學(xué)生的負(fù)擔(dān),但是找兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)時(shí)由于采用了列舉法,學(xué)生得花較多的`時(shí)間去找,當(dāng)碰到的兩個(gè)數(shù)都比較大時(shí),不僅花時(shí)多,而且還容易出現(xiàn)遺漏或算錯(cuò)的情況。相比之下,用短除法來求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)就不會(huì)出現(xiàn)這方面的問題,所以我在實(shí)際教學(xué)中,先根據(jù)概念采用一一列舉的方法求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù),待學(xué)生熟悉之后就教學(xué)生運(yùn)用短除法求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù),這樣的安排效果不錯(cuò),學(xué)生也沒感到增加了負(fù)擔(dān)。

        因數(shù)和倍數(shù)教學(xué)反思14

          《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。尤其對(duì)因數(shù)和倍數(shù)和是一對(duì)相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和孩子們玩了一個(gè)小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學(xué)生對(duì)相互依存理解了,在描述因數(shù)和倍數(shù)的概念時(shí)就不會(huì)說錯(cuò)了。對(duì)于這節(jié)課的教學(xué),我特別注意下面幾個(gè)細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

          一是教材雖然不是從過去的整除定義出發(fā),而是通過一個(gè)乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時(shí)特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明.二是要學(xué)生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號(hào)兩邊的整數(shù),但前者是相對(duì)于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對(duì)于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別。“倍”的概念比“倍數(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),幫助孩子們認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對(duì)這組概念就理解透徹了,不會(huì)模糊了。

          《倍數(shù)和因數(shù)》教學(xué)反思2

          本單元的重點(diǎn)是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別,內(nèi)容較為抽象,為讓學(xué)生理清各概念間的前后承接關(guān)系,達(dá)到融會(huì)貫通的程度,在學(xué)習(xí)《因數(shù)和倍數(shù)》這節(jié)課時(shí),我注意做到以下幾點(diǎn):

          一、加強(qiáng)對(duì)概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念。

          因數(shù)和倍數(shù)是最基本的兩個(gè)概念,理解了因數(shù)和倍數(shù)的含義對(duì)于一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的、倍數(shù)的個(gè)數(shù)是無限的'等結(jié)論自然也就掌握了。因此,教學(xué)時(shí),我引導(dǎo)學(xué)生觀察生活中的情景圖引出乘法算式2×6=12,讓學(xué)生在多說中體會(huì)、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關(guān)系。學(xué)生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關(guān)系,同時(shí)引出12的所有因數(shù),讓孩子感受到用乘法算式找一個(gè)數(shù)的因數(shù)的方法,為后面學(xué)習(xí)找一個(gè)數(shù)的因數(shù)做好鋪墊。

          二,引導(dǎo)孩子在自主探究中學(xué)習(xí)新知

          在學(xué)習(xí)找一個(gè)數(shù)的因數(shù)時(shí),讓孩子們動(dòng)腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導(dǎo)中優(yōu)化了方法,孩子們在體驗(yàn)中逐步掌握了方法,學(xué)得深刻,方法熟練。

          三、注意培養(yǎng)學(xué)生的抽象思維能力

          教學(xué)中,注重學(xué)生的動(dòng)腦思考、觀察,讓學(xué)生在自主的探究學(xué)習(xí)中表達(dá)自己的想法,通過一些特殊的例子,引導(dǎo)學(xué)生用數(shù)學(xué)的語言總結(jié)概括一些概念,逐步形成從特殊到一般的歸納推理能力。

        因數(shù)和倍數(shù)教學(xué)反思15

          《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的'人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這局部內(nèi)容同學(xué)初次接觸,對(duì)于同學(xué)來說是比較難掌握的內(nèi)容。尤其對(duì)因數(shù)和倍數(shù)和是一對(duì)相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過捕獲生活與數(shù)學(xué)之間的聯(lián)系,協(xié)助同學(xué)理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和小朋友們玩了一個(gè)小游戲。用“ 我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。同學(xué)對(duì)相互依存理解了,在描述因數(shù)和倍數(shù)的概念時(shí)就不會(huì)說錯(cuò)了。對(duì)于這節(jié)課的教學(xué),我特別注意下面幾個(gè)細(xì)節(jié)來協(xié)助同學(xué)理解因數(shù)和倍數(shù)的概念。

          一是教材雖然不是從過去的整除定義動(dòng)身,而是通過一個(gè)乘法算式來引出因數(shù)和倍數(shù)的概念,但實(shí)質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時(shí)特別注意讓同學(xué)明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要同學(xué)注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號(hào)兩邊的整數(shù),但前者是相對(duì)于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對(duì)于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1。5是0。3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1。5是0。3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),協(xié)助小朋友們認(rèn)真理解辨析,所以同學(xué)一節(jié)課下來對(duì)這組概念就理解透徹了,不會(huì)模糊了。

        【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:

        《倍數(shù)和因數(shù)》教學(xué)反思09-16

        因數(shù)和倍數(shù)的教學(xué)反思06-11

        因數(shù)和倍數(shù)教學(xué)反思10-11

        《因數(shù)和倍數(shù)》教學(xué)反思01-06

        蘇教版《倍數(shù)和因數(shù)》教學(xué)反思01-16

        【通用】因數(shù)和倍數(shù)教學(xué)反思07-17

        小學(xué)數(shù)學(xué)因數(shù)和倍數(shù)教學(xué)反思12-08

        《因數(shù)與倍數(shù)》教學(xué)反思11-26

        《倍數(shù)與因數(shù)》教學(xué)反思07-18

        《因數(shù)和倍數(shù)》教學(xué)設(shè)計(jì)12-03