思思热免费在线视频观看|欧美国产精品一级|精品亚洲一区二区|真实国产乱子伦对白视频

<b id="w545d"><legend id="w545d"></legend></b>
<blockquote id="w545d"></blockquote>
    1. <thead id="w545d"></thead>
        首頁 申請書推薦信邀請函通知工作總結(jié)工作計劃策劃書工作報告合同演講稿職業(yè)規(guī)劃
        當(dāng)前位置:98158范文網(wǎng)>教育范文>教學(xué)反思>因數(shù)和倍數(shù)的教學(xué)反思

        因數(shù)和倍數(shù)的教學(xué)反思

        時間:2024-06-11 10:21:09 教學(xué)反思 我要投稿

        因數(shù)和倍數(shù)的教學(xué)反思

          作為一位剛到崗的教師,我們的任務(wù)之一就是課堂教學(xué),教學(xué)的心得體會可以總結(jié)在教學(xué)反思中,那么優(yōu)秀的教學(xué)反思是什么樣的呢?以下是小編收集整理的因數(shù)和倍數(shù)的教學(xué)反思,歡迎大家分享。

        因數(shù)和倍數(shù)的教學(xué)反思

          因數(shù)和倍數(shù)的教學(xué)反思 篇1

          本節(jié)課是第二單元的第一課時,第二單元的教學(xué)內(nèi)容較為抽象,很難結(jié)合生活實例或具體情境來進行教學(xué),學(xué)生理解起來有一定的難度。加強對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。還有要引導(dǎo)學(xué)生用聯(lián)系的觀點去掌握這些知識,而不是機械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。

          今天這節(jié)課的教學(xué)的倍數(shù)和因數(shù)是講述兩個數(shù)之間的一種相互依存關(guān)系,于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學(xué)生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的.概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時,我還出示了一個除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

          找出一個數(shù)的因數(shù)要做到不重復(fù)和不遺漏,有些學(xué)生還不能找全,沒有掌握方法,我在今后的教學(xué)中還要注意對學(xué)困生的輔導(dǎo)。

          因數(shù)和倍數(shù)的教學(xué)反思 篇2

          本課程的教材涉及許多概念,這些概念抽象且容易混淆。如何使學(xué)生更容易理解這些概念,理清概念之間的關(guān)系,構(gòu)建知識之間的網(wǎng)絡(luò)體系,是本課程教學(xué)的重點和難點。同時,學(xué)習(xí)整理知識是這門課教學(xué)的靈魂。

          成功:

          1。構(gòu)建知識網(wǎng)絡(luò)體系,理清知識之間的關(guān)系。在教學(xué)中,我首先通過一個聯(lián)想紙牌游戲激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生用因子和復(fù)數(shù)的知識來描述數(shù)字2。學(xué)生很容易認(rèn)為2是最小的素數(shù),2是偶數(shù),2的因子是1和2的倍數(shù),2。有2,4,6和hellip,2。2的倍數(shù)特征是一個位為0、2、4、6、8的數(shù)字,學(xué)生回答后,教師及時掌握關(guān)鍵詞,引出本單元的所有概念:因子、倍數(shù)、素數(shù)、復(fù)合數(shù)、奇數(shù)、偶數(shù)、公因子、最大公因子、公倍數(shù)、最小公倍數(shù)、,多重特征2、多重特征3和多重特征5。如何使這些雜亂的概念更簡潔、更有序、更能反映知識之間的關(guān)系?通過課前的安排,發(fā)揮了小組合作與交流的作用。在相互交流中,學(xué)生相互學(xué)習(xí),相互學(xué)習(xí),逐漸對這些概念之間的關(guān)系有了進一步的理解。然后,在選擇了幾個學(xué)生的作品進行展示和評價后,最后,教師和學(xué)生一起組織和調(diào)整,最后完善知識之間的網(wǎng)絡(luò)體系。

          2.教學(xué)生如何組織知識。在教學(xué)中,教人釣魚比教人釣魚更好。作為一名教師,最好教給學(xué)生必要的學(xué)習(xí)方法。在本課的整理和復(fù)習(xí)中,我要求學(xué)生在課前總結(jié)第二單元中因子和倍數(shù)的概念。涉及的`概念有:因子、倍數(shù)、公因子、公倍數(shù)、最大公因子、最小公倍數(shù)、素數(shù)、合數(shù)、奇數(shù)、偶數(shù)、2的多重特征、3的多重特征、5的多重特征,并提出了具體要求:第一,觀察和分析這些概念,哪些概念是密切相關(guān)的;第二,根據(jù)這些概念之間的密切關(guān)系,它們可以分為幾個類別;第三,它們可以用你喜歡的方式表達,也可以用數(shù)學(xué)手寫報紙的形式呈現(xiàn)。課前設(shè)計完成后,我提前收集了一些有代表性的作品,放在課件中,供學(xué)生欣賞,互相學(xué)習(xí),互相學(xué)習(xí),共同提高。通過小組討論和課堂交流,教師和學(xué)生一起整理和總結(jié)本單元的概念,并繪制知識網(wǎng)絡(luò)圖。

          在本課程的整個設(shè)計過程中,通過學(xué)生的聯(lián)想,回憶以前學(xué)到的知識,并在他們的頭腦中建立知識之間的關(guān)系,從而揭示出這個知識網(wǎng)絡(luò)圖就是思維導(dǎo)圖。掌握這一方法后,我們可以系統(tǒng)地梳理數(shù)學(xué)中的每一個單元、每一卷知識、小學(xué)數(shù)學(xué)知識,讓學(xué)生體會思維導(dǎo)圖法的威力。學(xué)生在感嘆這種方法的魅力的同時,也可以將這種方法推廣到其他學(xué)科,讓學(xué)生真正掌握知識整理的方法,并將其應(yīng)用到以后的單元知識整理中。

          3.進一步回顧實踐中的概念。在實踐環(huán)節(jié),我根據(jù)這些概念設(shè)計了一些相應(yīng)的練習(xí)。目的是通過實踐促進復(fù)習(xí),在實踐中更好地理解這些概念的具體含義,加深學(xué)生對概念的理解和掌握。在實踐過程中,學(xué)生不僅掌握了知識排序的方法,而且對知識的語境有了深刻的理解,對每個知識點的概念有了更清晰的理解,起到了復(fù)習(xí)和復(fù)習(xí)舊知識的作用。

          缺點:

          1。個別學(xué)生不會在展覽評價中進行評價,而只是思考設(shè)計的美,而不是解釋知識之間的關(guān)系。老師應(yīng)該在這一點上給他們指導(dǎo)。

          2.有些學(xué)生甚至連最小的偶數(shù)都不懂,因為第二單元的知識是在開學(xué)時學(xué)的,有些知識點已經(jīng)忘記了。因此,他們在學(xué)習(xí)每一單元后,會繼續(xù)鞏固和實踐自己的知識。

          3.由于知識點太多,實踐時間不足,基本實踐時間可以保證,但需要擴展的知識沒有得到更好的呈現(xiàn)。

          再教育設(shè)計:

          1。掌握數(shù)學(xué)知識的本質(zhì)。漂亮的排序表單只是外部的,而不是關(guān)鍵的。注重引導(dǎo)學(xué)生從數(shù)學(xué)本質(zhì)出發(fā)思考問題,排除數(shù)學(xué)本質(zhì)以外的東西,激發(fā)思維,從而形成良好的數(shù)學(xué)思維品質(zhì)。

          2.我們應(yīng)該繼續(xù)深入探索數(shù)學(xué)的思想、靈魂和方法來指導(dǎo)課堂教學(xué),讓學(xué)生掌握未來學(xué)習(xí)知識的鑰匙,學(xué)會打開知識的大門。

          因數(shù)和倍數(shù)的教學(xué)反思 篇3

          《公倍數(shù)和公因數(shù)》在新教材中改動很大,新教材將數(shù)的整除中有關(guān)分解質(zhì)因數(shù)、互質(zhì)數(shù)、用短除法求幾個數(shù)的最大公因數(shù)和最小公倍數(shù)的教學(xué)內(nèi)容精簡掉了,新教材突出了讓學(xué)生在現(xiàn)實情境中探究認(rèn)識公倍數(shù)和最小公倍數(shù),公因數(shù)和最大公因數(shù),突出了運用數(shù)學(xué)概念,讓學(xué)生探索找兩個數(shù)的最小公倍數(shù)、最大公因數(shù)的方法,注重讓學(xué)生在解決問題的過程中,主動探索簡潔的方法,進行有條理的思考,加強了數(shù)學(xué)與現(xiàn)實生活的聯(lián)系。教學(xué)以后與以前的教材相比,主要的體會有以下幾點。

          一是在現(xiàn)實的情境中教學(xué)概念,讓學(xué)生通過操作領(lǐng)會公倍數(shù)、公因數(shù)的含義。例1教學(xué)公倍數(shù)和最小公倍數(shù),例3教學(xué)公因數(shù)和最大公因數(shù),都是形成新的數(shù)學(xué)概念,都讓學(xué)生在操作活動中領(lǐng)會概念的含義。學(xué)生通過操作活動,感受公倍數(shù)和公因數(shù)的實際背景,縮短了抽象概念與學(xué)生已有知識經(jīng)驗之間的距離,有利于學(xué)生運用公倍數(shù)、最小公倍數(shù)、公因數(shù)和最大公因數(shù)的知識解決實際問題。

          二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在教學(xué)中,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用怎樣的長方形可以正好鋪滿一個正方形;用邊長幾厘米的正方形可以正好鋪滿一個長方形。在對所發(fā)現(xiàn)的不同的結(jié)果的過程中,引導(dǎo)學(xué)生聯(lián)系除法算式進行思考,對直觀操作活動進行初步的抽象。再把初步發(fā)現(xiàn)的結(jié)論進行類推,在此基礎(chǔ)上,引導(dǎo)學(xué)生思考正方形的邊長與長方形的長和寬有什么關(guān)系,再揭示公倍數(shù)和公因數(shù),最小公倍數(shù)與最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合等圖式,顯示公倍數(shù)與公因數(shù)的意義。讓學(xué)生經(jīng)歷了概念的形成過程。

          三是刪掉了一些與學(xué)生實際聯(lián)系不夠緊密、對后繼學(xué)習(xí)沒有影響的'內(nèi)容后,確實減輕了學(xué)生的負(fù)擔(dān),但是找兩個數(shù)的最小公倍數(shù)和最大公因數(shù)時由于采用了列舉法,學(xué)生得花較多的時間去找,當(dāng)碰到的兩個數(shù)都比較大時,不僅花時多,而且還容易出現(xiàn)遺漏或算錯的情況。相比之下,用短除法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)就不會出現(xiàn)這方面的問題,所以我在實際教學(xué)中,先根據(jù)概念采用一一列舉的方法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),待學(xué)生熟悉之后就教學(xué)生運用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),這樣的安排效果不錯,學(xué)生也沒感到增加了負(fù)擔(dān)。

          因數(shù)和倍數(shù)的教學(xué)反思 篇4

          《倍數(shù)和因數(shù)》,由于之前沒上過這冊內(nèi)容,在看完教材后就和同組的老師說,這個內(nèi)容好像挺簡單的。不過上完這節(jié)課后這個想法卻煙消云散,根本沒有想象的那么容易上,而且在課堂中存在了很多在預(yù)設(shè)中沒有想到的問題,下面對自己的課堂做一些反思:

          1.在第一個環(huán)節(jié)認(rèn)識倍數(shù)和因數(shù)的意義中,首先讓學(xué)生用12個同樣大小的小正方形擺成一個長方形,并用乘法算式來表示你是怎么擺的,有幾種不同的擺法?通過讓學(xué)生動手操作實踐,體現(xiàn)了以學(xué)生為本,而且能喚醒學(xué)生已有的知識經(jīng)驗,抽象為具體討論的數(shù)學(xué)問題。在抽象出三個不同的乘法算式后,我以第一個乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關(guān)系,本來以為說:“4和3是12的因數(shù),12是4和3的倍數(shù)”應(yīng)該是很簡單的兩句話,學(xué)生應(yīng)該會說,可是當(dāng)請學(xué)生來自己選擇一個乘法算式來說一說時,好幾個學(xué)生卻被卡住了,還有的說成了4是12的倍數(shù)。

          針對學(xué)生出現(xiàn)的問題,我覺得可能是自己在介紹時運用的不到位,一個是比較小,后面的同學(xué)都沒能看清楚;另一方面我預(yù)想的比較簡單,所以說了一遍后也沒請學(xué)生再復(fù)述一遍。在說到“誰是誰的倍數(shù),誰是誰的因數(shù)”時應(yīng)該在中相繼出示這兩句話,這樣的話讓學(xué)生看著說印象會更深刻,相信學(xué)生說的也會比較好。

          2。第二個環(huán)節(jié)是探求找一個數(shù)的倍數(shù)的方法,從上一個環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過疑問來激發(fā)學(xué)生找出3的倍數(shù)有哪些?學(xué)生很快能找到,但是并沒有找全,于是再問,那又什么辦法把3的倍數(shù)找全呢?學(xué)生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問學(xué)生:觀察上面這幾個例子,你有什么發(fā)現(xiàn)?請了好幾個學(xué)生都沒能找到,最后還是老師告訴了學(xué)生倍數(shù)最小是?最大呢?

          針對最后請學(xué)生找一找發(fā)現(xiàn)倍數(shù)的共同特點這一問題,我覺得我在設(shè)計時問題提得太大,太籠統(tǒng)。學(xué)生聽到問題后可能無從下手,不知道該找什么。可以問:剛才找了2,3,5的倍數(shù),觀察這幾個數(shù)的倍數(shù),他們有什么共同特點?這樣學(xué)生就會比較有針對性地去尋找結(jié)果。

          3。第三個環(huán)節(jié)是探求找一個數(shù)因數(shù)的方法,找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復(fù)又不遺漏地找一個數(shù)的`因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有是一定困難的,而這個環(huán)節(jié)我處理的也不到位,學(xué)生對找一個數(shù)因數(shù)的方法掌握的不夠好。

          我一開始設(shè)計請學(xué)生自主找36的因數(shù),在巡視時發(fā)現(xiàn)有一部分學(xué)生沒有頭緒,無從下手,時間倒是花去了不少。所以我覺得是否可以先從12下手,因為前面一開始已經(jīng)找過12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的因數(shù)時就會好一些。

          在學(xué)生自主探索完36的因數(shù)有哪些后,交流不同學(xué)生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問你是怎么找到的?學(xué)生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實這里除了用除法來找之外,還可以用乘的方法來找,而乘的方法似乎對于學(xué)生來說在找得時候還更簡單一點。更重要的是我覺得一對對的找對于找全一個數(shù)的因數(shù)是一個很重要的方法,而我卻把這個方法忽略了,所以學(xué)生對于找一個數(shù)的因數(shù)的方法不夠深刻,在練習(xí)中也發(fā)現(xiàn)做的不理想。

          4。第四個環(huán)節(jié)是鞏固練習(xí),我設(shè)計了2個小游戲。一個是看誰反應(yīng)快,符合要求的請學(xué)生起立,這個游戲?qū)W生參與面廣,學(xué)生也感興趣,還從中發(fā)現(xiàn)了找誰的學(xué)號是幾的因數(shù),1每次都會起立,就更好的鞏固了一個數(shù)的因數(shù)最小是1。但是也有個別學(xué)生反應(yīng)比較慢。第二個小游戲是猜一猜老師的手機號碼是多少?但是由于前面時間用的比較多,所以沒來得及做。

          原本認(rèn)為簡單的課卻一點都不簡單,每個細小環(huán)節(jié)的把握都要求我去仔細的鉆研教材,設(shè)計好每一步,這樣才能上好一節(jié)課。

          因數(shù)和倍數(shù)的教學(xué)反思 篇5

          1、立足于學(xué)生的思維特點。中年級學(xué)生的思維特點是由具體形象思維到抽象概括思維過渡的重要年齡段。因此,我放棄了用12個小正方形擺長方形的動手實踐活動,而選用了看12個小正方形在腦中想象擺法。在留有短暫時間讓學(xué)生思考,腦中逐漸有了長方形的圖象紛紛舉手之后,我又不急于提問,而是追問:你能不能用一道乘法算式來表示?當(dāng)學(xué)生說出乘法算式時,也不急于就此,還讓其余同學(xué)想想他是如何擺的,做到全員參與。這種由形象到抽象,再由抽象到形象的過程,是符合學(xué)生的思維特點的,對于發(fā)展學(xué)生的抽象概括思維是有利的。

          2、層層輔墊,為學(xué)生自主探索打下了堅實的基礎(chǔ)。探索36的所有因數(shù)是本節(jié)課的'重難點,我在這之前做了層層的輔墊。

         。1)3個乘法算式的呈現(xiàn)我作了調(diào)整:1×12=12,2×6=12,3×4=12。潛移默化的影響學(xué)生的有序思考。

         。2)在學(xué)生根據(jù)其余兩算式說因數(shù)和倍數(shù)的關(guān)系之后,我對12的所有因數(shù)進行了小結(jié):12的因數(shù)有1,12,2,6,3,4。讓學(xué)生感受到一道乘法算式中蘊藏著兩個因數(shù)。

         。3)36這個數(shù)比較大,學(xué)生找起36的所有因數(shù)時有點困難,我設(shè)計了從3,5,18,20,36五個數(shù)中選擇兩個數(shù)來說說誰是誰的因數(shù),誰是誰的倍數(shù)?這一教學(xué)環(huán)節(jié),減輕了學(xué)生的困難,同時也能檢驗學(xué)生對因數(shù)和倍數(shù)概念是否已正確認(rèn)識。當(dāng)學(xué)生會說3是36的因數(shù),36是3的倍數(shù)時,說明他們腦中已經(jīng)有了判斷的依據(jù):3×12=36。

         。4)在學(xué)生獨立探索前,我又提醒學(xué)生,在找36的所有因數(shù)時,如果遇到困難,不要忘了我們已經(jīng)尋找過12這個數(shù)的所有因數(shù),可以作為參考。

          這四個方面的準(zhǔn)備,學(xué)生的獨立思考才有了思維的依托,遇到困難,他們就會自我想辦法,自我解決問題,這樣的探索就會有效,不會浮于表面,流于形勢。

          3、有層次的呈現(xiàn)作業(yè),給學(xué)生以正面引導(dǎo)為主。在概括總結(jié)找36所有因數(shù)的方法時,我找了三份的作業(yè),第一份是有序,成對思考的1,36,2,18,3,12,4,9,6。在交流中讓學(xué)生明確只有有序的,成對的思考才會做到既不遺漏,又能快捷方便,第二份作業(yè)是所有的因數(shù)按順序排列的1,2,3,4,6,9,12,18,36。結(jié)果作業(yè)中漏了一個4,這是個時機,在表揚了這個學(xué)生能按順序的排列,做到美觀這個優(yōu)點之后,提出問題:美中不足的是什么?學(xué)生:一個一個找麻煩,還容易丟。我接著追問;我們能給他提些建議嗎?第三份是無序的有遺漏的,也讓學(xué)生給他提建議,讓他也能做到一個不漏。這三份作業(yè)對比下來,先教給學(xué)生正確的思考方法,再以正確的方法判斷其他同學(xué)思考不當(dāng)?shù)牡胤剑⑻岢鼋ㄗh。尋找一個數(shù)所有因數(shù)的方法也能深刻地印在學(xué)生腦里。

          4、大膽放手,產(chǎn)生矛盾沖突,發(fā)現(xiàn)問題,想辦法解決問題。在找3的倍數(shù)時,我想學(xué)生有了前面的學(xué)習(xí)基礎(chǔ),我直接拋出問題:你能像上面這樣有序的從小到大的找出3的倍數(shù)嗎?學(xué)生在找中發(fā)現(xiàn):3的倍數(shù)有很多,寫不完。我追問;那怎么辦,有辦法嗎?通過一會兒的沉默思考后,紛紛有學(xué)生提出省略號。

          5、趣味練習(xí),聯(lián)想,探索。練習(xí)中我設(shè)計了兩道題,一是猜我的電話號碼,激發(fā)起學(xué)生的興趣,二是探索計數(shù)器的奧秘,多位老師問起我的設(shè)計意圖,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉,牛頓看到蘋果落地,通過聯(lián)想,最終發(fā)現(xiàn)了萬有引力定律,瓦特看到茶壺里冒出蒸氣,通過聯(lián)想,最終發(fā)明了蒸氣機…這與一個人的認(rèn)真觀察,善于聯(lián)想,勇于探索是分不開的。

          因數(shù)和倍數(shù)的教學(xué)反思 篇6

          北師大版五年級數(shù)學(xué)上、第三單元第一節(jié)《倍數(shù)與因數(shù)》是一節(jié)概念課。關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)意義,只是借助乘法算式加以說明,進而讓學(xué)生探究尋找一個數(shù)的倍數(shù)和因數(shù)。通過備課,我梳理出這樣一個教學(xué)脈絡(luò):乘法算式——倍數(shù)和因數(shù)——乘法算式——找一個數(shù)的倍數(shù)。從教材本身來看,這部分知識對于五年級學(xué)生而言,沒有什么生活經(jīng)驗,也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課。如何借助教材這一載體,讓學(xué)生在互動、探究中掌握相應(yīng)的知識,讓乏味變成有味呢?我從以下兩個方面談一點教學(xué)體會。

          一、設(shè)疑遷移,點燃學(xué)習(xí)的火花。

          良好的開頭是成功的一半。我采用一道腦筋急轉(zhuǎn)彎題作為談話引入課題,不僅可以調(diào)動學(xué)生的學(xué)習(xí)興趣,看似不相關(guān)的兩件事例中隱藏著共同點:一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進行有效的滲透和拓展。

          教學(xué)找一個數(shù)的倍數(shù)時,我依據(jù)學(xué)情,設(shè)計讓學(xué)生獨立探究尋找2的倍數(shù)、5的倍數(shù),學(xué)生發(fā)現(xiàn)2的倍數(shù)、5的倍數(shù)寫不完時,通過討論,認(rèn)為用省略號表示比較恰當(dāng),用語文中的一個標(biāo)點符號解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗到解決問題的愉快感和掌握新知的成就感。

          二、滲透學(xué)法,形成學(xué)習(xí)的技能。

          由于一個數(shù)倍數(shù)的個數(shù)是無限的,那么如何讓學(xué)生體會“無限”、又如何有序?qū)懗鰜砟?我讓學(xué)生嘗試說出3的倍數(shù)。學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。我組織學(xué)生展開評價,有的學(xué)生認(rèn)為:從小到大依次寫,因為有序,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,因為簡捷正確率高所以覺得好。如此的交流雖然花費了“寶貴”的'學(xué)習(xí)時間,但是學(xué)生從中能體會到學(xué)習(xí)的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風(fēng)光無限。

          三、學(xué)練結(jié)合,及時把握學(xué)生學(xué)情。

          在學(xué)生通過具體例子初步認(rèn)識了倍數(shù)和因數(shù)以后,通過大量的練習(xí)讓學(xué)生在練習(xí)中感悟,練習(xí)中加深理解概念;在探究出找倍數(shù)的方法以后,及時讓學(xué)生寫出2的倍數(shù)、5的倍數(shù),從而引導(dǎo)學(xué)生發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點,并適時進行針對性練習(xí),鞏固新知。

          課尾,我設(shè)計了四道達標(biāo)檢測練習(xí),將整堂課的內(nèi)容進行整理和概括,對易混淆的概念加以比較,對本節(jié)課重要知識點進行檢測,及時掌握了學(xué)生的學(xué)情。

          縱觀整節(jié)課,學(xué)生在學(xué)習(xí)過程中自始至終處于主體地位,嘗試練習(xí)、自主探索、解決問題,教師只是加以引導(dǎo),以合作者的身份參與其中。學(xué)生在思維上得到了訓(xùn)練,探究問題、尋求解決問題策略的能力也會逐步得到提高。

          因數(shù)和倍數(shù)的教學(xué)反思 篇7

          《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是通過除法算式來引出整除的概念,而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨存在,不是很好理解。我通過生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實例來幫助學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

          1、是我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。

          2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,可以是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。

          3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的`聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣?梢哉f"15是3的倍數(shù)",也可以說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0.的倍數(shù)"。在課堂中反復(fù)強調(diào),幫助學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。


          因數(shù)和倍數(shù)的教學(xué)反思 篇8

          一、教材與知識點的對比與區(qū)別。

          1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心。“因數(shù)與倍數(shù)”的認(rèn)識與原教材有以下兩方面的區(qū)別1新課標(biāo)教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學(xué)習(xí)而是反其道而行之通過乘法算式來導(dǎo)入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的.變化原因何在教師必須要認(rèn)真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學(xué)習(xí)教參了解到以下信息學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對整除的含義有比較清楚的認(rèn)識不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學(xué)化定義。

          2、相似概念的對比。1彼“因數(shù)”非此“因數(shù)”。在同一個乘法算式中兩者都是指乘號兩邊的整數(shù)但前者是相對于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣。我們可以說“1.5是0.3的5倍”但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時運用的方法與“求一個數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。

          二、教法的運用實踐

          1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍因此對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求而且給學(xué)生一個直觀的感受!耙驍(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無關(guān)與分?jǐn)?shù)無關(guān)與負(fù)數(shù)無關(guān)雖沒學(xué)但有小部分學(xué)生了解。同時強調(diào)——非0——因為0乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法讓學(xué)生清晰明確。因此用直接導(dǎo)入法先復(fù)習(xí)自然數(shù)的概念再寫出乘法算式3×4=12說明在這個算式中3和4是12的因數(shù)12是3和4的倍數(shù)。

          2、在進行延續(xù)性教學(xué)中可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù)在板書要講究一個格式與對稱性這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。

          因數(shù)和倍數(shù)的教學(xué)反思 篇9

          因數(shù)和倍數(shù)是五年級下冊第二單元的教學(xué)內(nèi)容,由于知識較為抽象,學(xué)生不易理解,因此我在教學(xué)時做到了以下幾點:

          (1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。

          今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識倍數(shù)與因數(shù)的關(guān)系,

          (2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

         。3)根據(jù)學(xué)生的實際情況,教學(xué)找一個數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。

          (4)設(shè)計有趣游戲活動,擴大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的'空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂。

          因數(shù)和倍數(shù)的教學(xué)反思 篇10

          教學(xué)目標(biāo):

          1、使學(xué)生結(jié)合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關(guān)系。

          2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。

          3、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。

          教學(xué)重點:

          理解因數(shù)和倍數(shù)的含義。

          教學(xué)難點:

          探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。

          教學(xué)過程:

          一、認(rèn)識倍數(shù)和因數(shù)

          1、操作活動。

         。1)小黑板出示要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法表示出來。

         。2)整理:全班交流,分別板書4×3=1212×1=126×2=12

          3、學(xué)習(xí)“倍數(shù)”和“因數(shù)”的概念

         。1)談話:剛才同學(xué)們通過不同的擺法擺出了不同的長方形,而且還寫出了3個不同的乘法算式,今天,我們就一起來研究乘法算式中,數(shù)與數(shù)之間的關(guān)系。(出示:倍數(shù)和因數(shù))

          (2)根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?

          板書:12是4的倍數(shù),12是3的倍數(shù)

          4是12的因數(shù),3是12的因數(shù)

         。3)根據(jù)6×2=12,你能說出哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?根據(jù)12×1=12呢?

         。4)練一練:從3×6=1836÷4=9中任選一題說一說。

          為什么4和9是36的因數(shù)?

          4、小結(jié):根據(jù)乘法或除法算式我們可以確定誰是誰的因數(shù),誰是誰的倍數(shù)。為了方便,在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。

          二、探索找一個數(shù)的倍數(shù)的方法

          1、談話:在剛才的談話中,我們知道了12是3的倍數(shù),18也是3的倍數(shù)

          提問:3的倍數(shù)只有這兩個嗎?

          你還能再寫出幾個3的倍數(shù)?

          你是怎樣想的?

          你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?

          你能把3的倍數(shù)全都說完嗎?

          可以怎樣表示?

          2、議一議:你有沒有發(fā)現(xiàn)找3的倍數(shù)的小竅門?(在找3的倍數(shù)時,可以按從小到大的順序,依次用1、2、3……與3相乘,每次乘得的積都是3的倍數(shù))

          3、試一試:

         。1)2的倍數(shù)有

         。2)5的倍數(shù)有

          4、想一想:觀察上面幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?

          5、練一練:想想做做2

          三、探索求一個數(shù)的因數(shù)的方法

          1、提出問題:你能找出36的所有因數(shù)嗎?

          2、四人小組合作完成

          3、交流整理找一個數(shù)的因數(shù)的方法。

          4、試一試(既要一組一組地找,又要按次序排列)

          15的`因數(shù)

          16的因數(shù)

          5、比一比:根據(jù)上面幾個例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點?和同桌說一說

          6、練一練:想想做做

          四、課堂總結(jié)。

          1、這節(jié)課,你有什么收獲?

          五、鞏固提高

          1、判斷

          (1)12是倍數(shù),3是因數(shù)

         。2)6既是2的倍數(shù),又是3的倍數(shù)。

         。3)25以內(nèi)4的倍數(shù)有:4,8,12,16,20,24……

         。4)6的最小倍數(shù)是12,12的最小因數(shù)是6。

          2、看誰反應(yīng)快

          游戲準(zhǔn)備:學(xué)生按學(xué)號編成連續(xù)的自然數(shù)。(課前)

          游戲規(guī)則:凡是學(xué)號符合以下要求的,請站起來,看誰反應(yīng)快?

         。1)誰的學(xué)號是5的倍數(shù)

         。2)誰的學(xué)號是24的因數(shù)

         。3)誰的學(xué)號是30的因數(shù)

         。4)誰的學(xué)號是1的倍數(shù)

          反思:

          在教學(xué)過程中出現(xiàn)了一個問題:是在提問:“根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?”時,發(fā)現(xiàn)學(xué)生根本不能回答,本來以為學(xué)生在三年級的時候應(yīng)該對這部分的內(nèi)容有所了解,能順利回答,但是在課后與三年級的教師交流后發(fā)現(xiàn)沒有這方面的內(nèi)容安排。由此,我想:新課程實施了五年,我其實還是門外漢,還不能很好地適應(yīng)新課程的要求,新課程的教材編排具有連續(xù)性,而老版本經(jīng)常是一個知識點安排在一起,注重深度?磥斫處煵还庖P(guān)心自己年級的教材內(nèi)容,還得知道整個教材編排體系,知道各個年級知識點之間的聯(lián)系。這樣才能更好地完成教學(xué)任務(wù),使學(xué)生得到應(yīng)有的發(fā)展而不是降低要求的發(fā)展或者是被強行提高要求的發(fā)展。

          因數(shù)和倍數(shù)的教學(xué)反思 篇11

          在上學(xué)期的白紙備課活動中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時,我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點嗎?能突破重難點嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點,創(chuàng)設(shè)情境、設(shè)計游戲來突出重點、突破難點。在設(shè)計完教學(xué)過程后,我也與同組的老師交流了活動體會。原來在老教材中沒有因數(shù)這個概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因為我是第一次教學(xué)這個內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭,F(xiàn)在剛好又教了這個內(nèi)容,仔細參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的新穎所在。

          新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的'數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個乘法算式2×6=12可以同時說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)!

          這樣的設(shè)計既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,在實際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。

          因數(shù)和倍數(shù)的教學(xué)反思 篇12

          曾經(jīng)有人將公開課比喻成“摸著過河的石頭”,“通向峰頂?shù)那坌÷贰。是啊,因為對岸花香彌撒,因為峰頂風(fēng)光無限,但眾所周知,這個過程是艱難而曲折的,多少次要掉進河里,多少次想放棄攀登,但這個過程又可以使人“改頭換面”,使人學(xué)習(xí)到許多以前沒有學(xué)到的知識和技能。正是一節(jié)全國的數(shù)學(xué)公開課,讓我經(jīng)歷了這個過程,也使我真真正正地“蛻變”了一次,經(jīng)歷了從思想到實際教學(xué)水平的一次飛躍,毫不夸張地說,這節(jié)課是我教學(xué)成長的一個催化劑。

          一、有壓力才有動力

          經(jīng)過市里、省里的層層選拔,6月中旬當(dāng)拿到全國公開課的入場券時,我是既歡喜,又擔(dān)憂。歡喜的是:領(lǐng)導(dǎo)這么信任我,讓我有這樣一個難得的機會鍛煉提升自己。可歡喜過后,心頭又有了些許擔(dān)憂,畢竟我才工作了兩年,教學(xué)經(jīng)驗不足,萬一講不好怎么辦?說實話,當(dāng)時我的壓力特別大。

          正是這股壓力,轉(zhuǎn)化為一股促我前進的動力,也使我最終有所收獲。在準(zhǔn)備這節(jié)全國公開課時,正是這股力量使我深入地、不厭其煩地去研究教材,全身心地投入到教學(xué)準(zhǔn)備中,這個過程也真正起到了提高我駕馭教材能力的作用。記得晉主任和孫老師幫我備課時,有很多我當(dāng)時接受不了的東西,每到這個時候,我都羞愧萬分,過后就會再從各個方面,多角度的研究教材,借助網(wǎng)絡(luò)、參考書等一切可以運用的教材輔助資料去理解教材。這一過程是艱苦的,但也就是在這艱苦的過程中,我駕馭教材的能力也在潛移默化中得到了提升。

          也是這種對自己不甚滿意的態(tài)度讓我提醒自己不斷去學(xué)習(xí),在自我加壓中,許多原本薄弱的技能也得到了加強。在教學(xué)公開課之前,我對課件的研究不是很深。但為了這節(jié)課更加完美,我就主動地去查找這方面的資料,學(xué)習(xí)這方面的知識,實在不懂的就請教學(xué)校的微機老師。讓我欣喜的是,通過這次講課,我制作課件的水平也得到了質(zhì)的飛躍。從原來的不懂,到現(xiàn)在的非常熟練。當(dāng)我的課件得到大家的認(rèn)同時,我心里有一種成就感,真正體會到了“有一份耕耘,就有一份收獲”的涵義。

          “以人為鑒,可明得失”。這節(jié)課為我提供了一個學(xué)習(xí),交流的平臺。在進行準(zhǔn)備的漫長的過程中,我聽了包括張齊華老師、程校長和王主任等多位名師講的這節(jié)課,在聽課當(dāng)中我領(lǐng)略到了大家的風(fēng)范,感受體會到了教學(xué)的魅力,認(rèn)清了自己的不足和差距。自己試講過后,晉主任等也都會給我提出寶貴的建議,讓我更加深刻地認(rèn)識了自己,促使我及時改掉缺點,不斷提高教學(xué)水平。

          這節(jié)課帶給我的收獲是頗多的`,但綜觀整堂課,我覺得要改進的地方還有很多,我只有不斷地進行反思,才能不斷地完善思路,最終才能有所悟,有所長。

          二、反思我的課堂

          《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖引出一個乘法算式,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。

          數(shù)學(xué)課程標(biāo)準(zhǔn)“以人為本”的理念決定著數(shù)學(xué)教學(xué)目標(biāo)的指向:適應(yīng)并促進學(xué)生的發(fā)展。根據(jù)本節(jié)課知識的特點和學(xué)生的認(rèn)知規(guī)律,我采用了角色轉(zhuǎn)換、數(shù)形結(jié)合、合作學(xué)習(xí)等發(fā)展性教學(xué)手段進行教學(xué),在教學(xué)中我注重體現(xiàn)以學(xué)生為主體的新理念,努力為學(xué)生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學(xué):

         。1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。

          因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,滲透相互依存的關(guān)系。

          師:今天王老師給大家?guī)砹艘粡堈掌,不過我先不給你們看,先讓你們來猜猜。照片有兩個爸爸兩個兒子。請你猜猜照片上至少幾個人?

          生:3個。

          師:你是怎么想的?

          生:兒子的爸爸是一個爸爸,爸爸的爸爸又是一個爸爸,所以有兩個爸爸。爺爺?shù)膬鹤邮且粋兒子,爸爸的兒子又是一個兒子,所以有兩個爸爸。

          師:正像同學(xué)所說的,爸爸或兒子是不能隨便叫的,是相對與另一個人而言的。得說清楚誰是誰的爸爸,誰是誰的兒子。

          師:看來人和人之間是具有一定關(guān)系的。我們都是學(xué)數(shù)學(xué)的,那數(shù)和數(shù)之間是否也具有一定關(guān)系呢?這節(jié)課我們就要研究數(shù)和數(shù)之間的關(guān)系。

          通過生活中人與人之間的關(guān)系,遷移到數(shù)學(xué)中的數(shù)和數(shù)之間的關(guān)系,這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)了對數(shù)學(xué)的興趣,又潛移默化地幫助學(xué)生理解了因數(shù)倍數(shù)之間的相互依存關(guān)系。在教學(xué)中,也達到了預(yù)期的效果,學(xué)生對因數(shù)和倍數(shù)相互依存的關(guān)系理解的比較深刻。

         。2)角色轉(zhuǎn)換,讓學(xué)生親身體驗數(shù)和數(shù)之間的聯(lián)系。

          因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關(guān)系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學(xué)手段,每人一張數(shù)字卡片,學(xué)生和老師都變成了數(shù)學(xué)王國里的一名成員。當(dāng)學(xué)生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學(xué)生都沉浸在自己的角色體驗中,學(xué)生都把自己當(dāng)成了一個數(shù)。通過對自己一個數(shù)的認(rèn)識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關(guān)系,既充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,又十分有效地突破了教學(xué)難點。

         。3)數(shù)形結(jié)合,讓學(xué)生帶著已有知識走進數(shù)學(xué)課堂。

          “數(shù)形結(jié)合”是一種重要的數(shù)學(xué)思想。對教師來說則是一種教學(xué)策略,是一種發(fā)展性課堂教學(xué)手段;對學(xué)生來說又是一種學(xué)習(xí)方法。如果長期滲透,運用恰當(dāng),則使學(xué)生形成良好的數(shù)學(xué)意識和思想,長期穩(wěn)固地作用于學(xué)生的數(shù)學(xué)學(xué)習(xí)生涯中。開課教師引導(dǎo)學(xué)生進行空間想象:

          師:首先,先請大家閉上眼睛,我們一起來想象。有一個長方形,它的長和寬都是整數(shù),它的面積是12,那長和寬可能是多少呢?想好了就可以把眼睛睜開。

          生1:長是6,寬是2。

          生2:長是4,寬是3。

          生3:長是12,寬是1。

          師:長是7行嗎?為什么?

          生:不行,因為找不到一個整數(shù)與7相乘得12。

          師:7不行,長是8行嗎?

          生:不行。

          由于學(xué)生對于長方形的面積=長×寬這個知識非常熟悉,我創(chuàng)新使用教材,在學(xué)生已有知識的基礎(chǔ)上,讓學(xué)生想象長和寬的情況,并通過“反正法”:長是7行嗎?為什么?讓學(xué)生充分的想象和思考,從而滲透“整數(shù)”的含義,這時數(shù)和形也在學(xué)生頭腦中有機結(jié)合。同時借助多媒體手段將長方形面積與長、寬的關(guān)系更直觀、形象的表現(xiàn)出來。這個過程也正好滲透了找一個數(shù)因數(shù)的方法,便于學(xué)生理解和掌握概念。這樣較好地把握了教學(xué)的起點,學(xué)生由已知走向未知的課堂,為后面教學(xué)的展開做好了鋪墊。

         。4)重組教材,根據(jù)學(xué)生的實際情況,多種形式探究找因數(shù)倍數(shù)的方法。

          教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學(xué)生的實際情況,我進行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進而又借助體態(tài)語言——打手勢,讓學(xué)生說出20和24的因數(shù),達到了鞏固練習(xí)的目的。這樣設(shè)計由易到難,由淺入深,符合了學(xué)生的認(rèn)知規(guī)律。而在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實效性。

         。5)收放有度,處理好講授與探究的關(guān)系。

          講授與探究是不相矛盾的,接受與發(fā)現(xiàn)對學(xué)生來說都是有益的學(xué)習(xí)方法。在數(shù)學(xué)知識領(lǐng)域,有許多內(nèi)容是人為規(guī)定的,這時教師就要發(fā)揮“傳道”的作用。比如本節(jié)課初步介紹因數(shù)和倍數(shù)的概念時,我采用講授的方法,幫助學(xué)生初步建立概念。

          師:看來兩個整數(shù)相乘等于12只有這3種情況。那在這里,4,3,6,2,12,1就與12有著特殊的關(guān)系。在數(shù)學(xué)上,像4×3=12,這時4就是12的因數(shù),12就是4的倍數(shù)。今天我們就來研究因數(shù)和倍數(shù)。因數(shù)和倍數(shù)是研究兩個整數(shù)之間的關(guān)系,為了研究方便一般不包括0。

          師:剛才我們說了4和12的關(guān)系,那3和12又有什么關(guān)系呢?誰來說?

          “師傅領(lǐng)進門,修行在個人”。這時學(xué)生只是停留在“鸚鵡學(xué)舌”的思維狀態(tài)中,關(guān)鍵是由表及里地理解因數(shù)和倍數(shù)的關(guān)系以及找因數(shù)、倍數(shù)的方法。因而后面的教學(xué)我大膽放手,通過對15、18、20、24幾個具體數(shù)的研究,讓學(xué)生逐步有順序、有規(guī)律的找出它的全部因數(shù)、倍數(shù),進而用自己的語言概括找因數(shù)、倍數(shù)的方法。

          由于我經(jīng)驗不足,課堂調(diào)控能力差,心理緊張等原因。在教學(xué)這一部分內(nèi)容時,我沒有做到收放有度。在講因數(shù)這一環(huán)節(jié)里放得太過,學(xué)生匯報15、18的因數(shù)時,已經(jīng)把“既不重復(fù),又不遺漏”找因數(shù)的方法匯報的很到位,大部分學(xué)生都已經(jīng)熟練掌握。但由于我缺乏經(jīng)驗,沒有脫離教案這根“拐棍”,仍然按部就班地讓學(xué)生探究20、24的因數(shù),沒有能及時收回,這樣不僅浪費了時間,而且影響了后面的教學(xué)。因此,講倍數(shù)部分的時間就太倉促,到后半部分我只能趕時間,就直接讓學(xué)生上臺找朋友、介紹自己。沒有讓學(xué)生充分地對比發(fā)現(xiàn)規(guī)律,也沒有讓學(xué)生充分地展開練習(xí),最后幾個環(huán)節(jié)好像“走過場”,顯得不扎實。有好多學(xué)生“找朋友”的情緒還很高漲,我也只能遺憾的對他們說:“同學(xué)們,真的很遺憾,下課的時間到了,還有好多同學(xué)沒有找到自己的朋友,有興趣的同學(xué)下課的時候再和老師一起玩這個游戲吧!”由于我缺乏時間觀念,也導(dǎo)致后面有很多精彩的環(huán)節(jié)沒有展現(xiàn)出來,比如說“完美數(shù)”的精彩環(huán)節(jié)。我深刻反省自己,出現(xiàn)這樣的情況,與我平時的教學(xué)是分不開的,平時教學(xué)中我沒有嚴(yán)格要求自己,以至于到比賽時會“原形畢露”。這節(jié)課給我留下了很多的遺憾,也為我敲響了警鐘!

          (6)趣味活動,擴大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。

          只有讓學(xué)生親身感受到數(shù)學(xué)知識內(nèi)在的智取因素,數(shù)學(xué)學(xué)習(xí)的無窮魅力才能深深地打動學(xué)生。這節(jié)課的練習(xí)設(shè)計緊緊把握概念的內(nèi)涵與外延,設(shè)計有效練習(xí),拓展知識空間。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習(xí),學(xué)生沒有盡興,也沒有達到充分地練習(xí)效果。

          雖然,這次講課有很多遺憾和不足,但它帶給我收獲是頗多的。它使我更清楚地認(rèn)識了自己,找準(zhǔn)了自己的起點,找到了自己今后努力的方向。在以后的教學(xué)中,我將以此為鑒,發(fā)揚自己的優(yōu)點,改正自己的不足,在以下幾方面需要更加地努力:

         。1)多學(xué)習(xí)——用教育理論武裝自己。通過講這次課,我深感自己的理論功底淺薄。為了使自己的成長的更快,我要多閱讀有關(guān)教育的書籍、資料,多看數(shù)學(xué)專業(yè)方面的課例、雜志。及時做好讀書筆記,不斷的關(guān)注課改前沿信息,用堅實的理論知識充實自己。

          (2)多交流——不斷提高自己的教學(xué)水平。作為一名年輕教師,我要積極向其他老師學(xué)習(xí),多走進優(yōu)秀教師的課堂,多學(xué)多問。把握好各種學(xué)習(xí)機會,通過各種渠道不斷的學(xué)習(xí),提高自己的教學(xué)質(zhì)量。

         。3)多思考——形成自己的教學(xué)風(fēng)格。針對自己的教學(xué)特點經(jīng)常地進行思考,使自己的教學(xué)水平逐步提高,教學(xué)經(jīng)驗日益豐富,尋找出一條適合自己的發(fā)展之路,爭取逐步形成自己的教學(xué)特色。

          (4)多反思——不斷地進行反思性學(xué)習(xí)。在教學(xué)中對教材認(rèn)真分析,認(rèn)真設(shè)計每一節(jié)課,并及時對每節(jié)課進行反思,認(rèn)真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。

          我非常慶幸能參加這次講課活動,在這個過程當(dāng)中,我的教學(xué)智慧在磨礪中漸漸生長,我有了很大的進步和提高。感謝領(lǐng)導(dǎo)給我這么一個寶貴的學(xué)習(xí)機會,并在這個過程中給予我的指導(dǎo)和幫助。今后,我一定以這一節(jié)課為契機,不斷完善教學(xué),總結(jié)經(jīng)驗教訓(xùn),在各個方面嚴(yán)格要求自己,爭取在今后的工作中更上一層樓!

          因數(shù)和倍數(shù)的教學(xué)反思 篇13

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》倡導(dǎo)“自主——合作——探究”的學(xué)習(xí)方式,強調(diào)學(xué)習(xí)是一個主動建構(gòu)的過程。因此,應(yīng)注重培養(yǎng)學(xué)生學(xué)習(xí)的獨立性和自主性,讓學(xué)生在教師的指導(dǎo)下主動地參與學(xué)習(xí),親歷學(xué)習(xí)過程,從而學(xué)會學(xué)習(xí)。

          一、以“理”為基點,將學(xué)生帶入新知的學(xué)習(xí)。

          概念教學(xué)重在“理”。學(xué)生理解“因數(shù)”、“倍數(shù)”概念有個逐步形成的過程,為了促進這一意識建構(gòu),我先讓學(xué)生通過自己已有的認(rèn)知結(jié)構(gòu),經(jīng)過“排列整齊的隊形——形成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學(xué)生在輕松、簡約并充滿自信中學(xué)習(xí)新知,在數(shù)與形的結(jié)合中,深刻體驗因數(shù)倍數(shù)的概念。

          二、以“序”為站點,培養(yǎng)學(xué)生的思維方式。

          概念形成得在“序”。學(xué)生對于概念的形成是一個由表及里、由形象到抽象的過程。當(dāng)學(xué)生對概念有了初步認(rèn)識后,讓學(xué)生探索如何找一個數(shù)的倍數(shù)的'因數(shù),這既是對概念內(nèi)涵的深化,也是對概念外延的探索。這時思維和排列上的有序性是教學(xué)的關(guān)鍵,也是本節(jié)課的深度之一。在教學(xué)時,分為兩個層次:第一個層次是讓學(xué)生在已有的知識基礎(chǔ)上找12的因數(shù),并在交流中,經(jīng)歷了一個從無序到有序、從把握個別到統(tǒng)攬整體、從思維混沌走向思維清晰的過程。抓住教學(xué)的難點“如何找全,并且不重復(fù)不遺漏”,讓學(xué)生自由地說,再引導(dǎo)學(xué)生說出想的過程,并加以調(diào)整。表面看來僅僅是組合的變換,實質(zhì)上是思維的提高和方法的優(yōu)化,并讓學(xué)生在對比中感受“一對一對”找因數(shù)的方法,經(jīng)歷了互相討論、相互補充、對比優(yōu)化的過程。第二個層次是在學(xué)生已經(jīng)有了探索一個數(shù)因數(shù)的方法,具備了一定有序思考的能力之后,啟發(fā)學(xué)生“能像找因數(shù)那樣有序的找一個數(shù)的倍數(shù)”,提高了學(xué)生的思維能力。

          三、以“思”為落腳點,培養(yǎng)學(xué)生發(fā)現(xiàn)思考的能力。

          概念的生成重在“思”,規(guī)律的形成重在“觀察”,教師如果能在此恰到好處的“引導(dǎo)”,一定會讓學(xué)生收獲更多,感悟更多。因此設(shè)計時,我借助了“找自己學(xué)號的因數(shù)和倍數(shù)”這個活動,在大量的有代表性的例子面前,在學(xué)生親自的嘗試中,在有目的的對比觀察中,學(xué)生的思維被逐步引導(dǎo)到了最深處,知道了一個數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過來也是正確的。教師在這里提供了有效的素材,可操作的素材,促使學(xué)生對所學(xué)的概念進行了有意義的建構(gòu),促進和發(fā)展了他們的思維。

          因數(shù)和倍數(shù)的教學(xué)反思 篇14

          教學(xué)內(nèi)容

          教科書第70-72頁的例題和“試一試”、“想想做做”第1-3題。

          教學(xué)目標(biāo)

          1、讓學(xué)生通過操作,利用乘法算式,認(rèn)識倍數(shù)的因數(shù)的意義,理解倍數(shù)和因數(shù)的關(guān)系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)的某些特征。

          2、讓學(xué)生體會一個數(shù)的倍數(shù)與因數(shù)之間相互依存的關(guān)系,發(fā)展學(xué)生的數(shù)感,培養(yǎng)學(xué)生觀察、分析、抽象能力,并在找一個數(shù)的倍數(shù)和因數(shù)的過程中,培養(yǎng)學(xué)生思維的有序性。

          3、使學(xué)生感悟數(shù)學(xué)知識內(nèi)在聯(lián)系的邏輯美,增強學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

          教學(xué)重點和難點

          重點:

          1、理解倍數(shù)與因數(shù)的意義及相互依存關(guān)系。

          2、掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。

          難點:

          1、理解倍數(shù)與因數(shù)的相互依存關(guān)系。

          2、找全一個數(shù)的所有因數(shù)。

          教學(xué)具準(zhǔn)備:小黑板、12個小正方形

          教學(xué)過程設(shè)計

          (一)激趣導(dǎo)入

          陶老師先來考考大家的語文水平,你能用“()是()的()”這樣一句話來表示陶老師和你的關(guān)系嗎?

          人與人之間有這樣相互依存的關(guān)系,我們的數(shù)學(xué)中也有這樣相互依存的關(guān)系,相信通過本節(jié)課的學(xué)習(xí)你會有所發(fā)現(xiàn)。

         。ǘ┱J(rèn)識倍數(shù)和因數(shù)

          1、出示12個小正方形。

          師:數(shù)一數(shù),一共有幾個小正方形?如果老師請你把這12個同樣的小正方形拼成一個長方形,會拼嗎?能不能用一條簡單的乘法算式表達出來?

          2、指名學(xué)生列式,提問其他學(xué)生:“你知道他是怎么擺的嗎?”要求學(xué)生說出每排擺幾個,擺了幾排。

          3、根據(jù)學(xué)生的回答,適時貼出各種不同擺法:

          12×1=12

          6×2=12

          4×3=12

          4、12個同樣大小的正方形拼成長方形,能列出三道不同的乘法算式,千萬別小看這些乘法算式,咱們今天研究的內(nèi)容就在這里。以4×3=12為例,12是4的倍數(shù),那12也是(3的倍數(shù)),4是12的因數(shù),那3也是(12的因數(shù))。同學(xué)們很有遷移的能力,這就是我們今天要研究的倍數(shù)和因數(shù)。(板書課題)

          5、根據(jù)另外兩道乘法算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)。

          6、剛才在聽的時候發(fā)現(xiàn)12×1=12說因數(shù)和倍數(shù)時有兩句特別拗口,是哪兩句?

          說明:雖然是拗口了點,不過數(shù)學(xué)上還真是這么回事。12的確是12的因數(shù),12也確實是12的倍數(shù)。為了方便,我們在研究倍數(shù)和因數(shù)時所說的數(shù)一般指不是0的自然數(shù)。

          7、說一說

          (1)根據(jù)72÷8=9,說一說哪一個數(shù)是哪一個數(shù)的倍數(shù),哪一個數(shù)是哪一個數(shù)的因數(shù)。

         。2)從下面的數(shù)中任選兩個數(shù),說一說哪一個數(shù)是哪一個數(shù)的倍數(shù),哪一個數(shù)是哪一個數(shù)的因數(shù)。

          3、5、18、20、36

         。ㄈ┨剿髡乙粋數(shù)因數(shù)和倍數(shù)的方法。

          1、找一個數(shù)的因數(shù)。

          (1)談話:看來同學(xué)們對于倍數(shù)和因數(shù)已經(jīng)掌握得不錯了。不過剛才陶老師在聽的時候發(fā)現(xiàn)了一個奧秘,好幾個數(shù)都是36的因數(shù),你發(fā)現(xiàn)了嗎?這五個數(shù)中那些數(shù)是36的因數(shù)?

          其實要找36的一兩個因數(shù)并不難,難就難在你有沒有能力把36的所有因數(shù)全部找出來?能不能?

          由于這個問題有一點難度,所以陶老師作幾點說明:

         、偎伎家幌,什么樣的數(shù)是36的因數(shù)?

         、诳梢元毩⑼瓿,也可以同桌合作完成。

         、巯胍幌朐趺凑也恢貜(fù)不遺漏,如有困難可參照書本第71頁。

         、軐懴乱驍(shù),如果能把怎么找到的方法寫在作業(yè)紙上更好。

          (2)學(xué)生找完后交流:你是怎么找的?怎樣找不重復(fù)不遺漏?

          (3)小結(jié):為了不重復(fù)不遺漏,我們在尋找一個數(shù)的因數(shù)時,可以按一定順序,一組一組地寫出36的所有因數(shù)。

         。4)完成“試一試”,然后集體交流。

          2、找一個數(shù)的倍數(shù)。

         。1)談話:尋找一個數(shù)的因數(shù)大家掌握得不錯,這節(jié)課還要研究倍數(shù)呢!你能找出3的倍數(shù)嗎?想一想,什么樣的數(shù)是3的倍數(shù)?

         。2)師生共同尋找。

          提問:怎么找不重復(fù)不遺漏?能全部說完嗎?可以怎樣表示3的倍數(shù)?

         。3)小結(jié)并規(guī)范寫法:

          3的倍數(shù):3、6、9、12、15……

          (4)完成“試一試”,然后集體交流。

          3、探索一個數(shù)的倍數(shù)和因數(shù)的特點:

          ①觀察比較:一個數(shù)的倍數(shù)和因數(shù)有什么特點呢?

          ②學(xué)生在小組內(nèi)進行比較、分析、討論,然后集體交流。

         、坌〗Y(jié)歸納:一個數(shù)的`倍數(shù)的個數(shù)是無限的,一個數(shù)的因數(shù)的個數(shù)是有限的;一個數(shù)的倍數(shù)中最小的是它本身,最大的不存在,而一個數(shù)的

          因數(shù)中最小的是1,最大的是它本身。

          4、填一填。

          15的因數(shù)有()

          30以內(nèi)7的倍數(shù)有()

         。ㄋ模┱n堂小結(jié)

          通過本節(jié)課的學(xué)習(xí),你有什么收獲?你發(fā)現(xiàn)數(shù)學(xué)中相互依存的關(guān)系了嗎?其實數(shù)學(xué)中有趣的事兒多著呢!

          閱讀《神奇而有趣的“完美數(shù)”》,感受數(shù)學(xué)的神奇。

          學(xué)生嘗試尋找第二個完美數(shù),師提示:

         。ㄎ澹┱n堂作業(yè)

          《數(shù)學(xué)補充習(xí)題》

          教后反思:

          總的感覺是上好一堂課不容易。倍數(shù)和因數(shù)是學(xué)生聞所未聞的兩個新概念,是純知識性的內(nèi)容,而且整節(jié)課的容量較大,學(xué)生能有效的掌握每一個知識點比較困難。為了更好更有效的達到教學(xué)目的,突破教學(xué)難點,我主要注重下面三個方面的設(shè)計:

          1、捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解概念間的關(guān)系。

          試上下來我感覺學(xué)生對倍數(shù)因數(shù)間的相互依存關(guān)系理解不到位,看著學(xué)生我突然想到可以利用我與學(xué)生的關(guān)系呀。于是我把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。

          2、以思維的條理性和有序性作為難點的突破口。

          在教學(xué)一個數(shù)的因數(shù)時,我讓學(xué)生通過比較發(fā)現(xiàn),有序的思考一個數(shù)的因數(shù)不但可以避免重復(fù)、遺漏,而且書寫整潔清楚。讓學(xué)生充分感受有條理、有序的思考是一種非常有效的學(xué)習(xí)方法。當(dāng)學(xué)習(xí)求一個數(shù)的倍數(shù)時,學(xué)生就自然而然的去有序的思考,通過合作交流,學(xué)生作業(yè)的匯報,發(fā)現(xiàn)只有有序的去找,才沒有遺漏,沒有重復(fù)。整節(jié)課下來,我發(fā)現(xiàn)這種有序思維不但能加速解決數(shù)學(xué)問題的思維進度,而且還有利于優(yōu)化學(xué)生的思維品質(zhì),快速發(fā)展學(xué)生的思維。

          3、以精心設(shè)計的練習(xí)作為有效訓(xùn)練的載體。

          為了幫助學(xué)生理解數(shù)和數(shù)之間的倍數(shù)和因數(shù)關(guān)系,練習(xí)中我設(shè)計了72÷8=9這道除法算式,讓學(xué)生說說哪一個數(shù)是哪一個數(shù)的倍數(shù),哪一個數(shù)是哪一個數(shù)的因數(shù),這樣學(xué)生就明白了除法算式中也有倍數(shù)和因數(shù)關(guān)系。接著我有設(shè)計了3、5、18、20、36這5個數(shù),運用所學(xué)知識讓學(xué)生選擇性說說哪兩個數(shù)存在倍數(shù)和因數(shù)的關(guān)系。這樣的設(shè)計,培養(yǎng)了學(xué)生觀察、分析問題、口頭表達的能力,也為了更進一步鞏固了倍數(shù)和因數(shù)的概念理解。在課尾,我還設(shè)計了尋找“完美數(shù)”的活動,這一活動充分調(diào)動學(xué)生參與學(xué)習(xí)、主動學(xué)習(xí)的積極性,并讓學(xué)生感受到了數(shù)學(xué)的神齊、有趣,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

          因數(shù)和倍數(shù)的教學(xué)反思 篇15

          在本節(jié)課中,我加強了操作,讓學(xué)生通過動手拼12個小正方形為長方形,經(jīng)歷操作活動可以喚醒學(xué)生相關(guān)的數(shù)學(xué)活動經(jīng)驗,幫助學(xué)生在操作的過程中有意識地感受1和12、2和6、3和4這幾組數(shù)和12之間的`有機聯(lián)系,為隨后學(xué)生有意義學(xué)習(xí)倍數(shù)和因數(shù)的概念打下基礎(chǔ)。

          找一個數(shù)的因數(shù)是本節(jié)課的一個難點,學(xué)生通過寫乘法算式和出發(fā)算式,感受到因數(shù)是成對出現(xiàn)的,同時要求學(xué)生在寫一個數(shù)的因數(shù)時,一前一后成對地寫出來,寫好以后是一串從小到大排列的數(shù),從而做到有序、不重復(fù)、不遺漏。而對于總結(jié)一個數(shù)倍數(shù)和因數(shù)的特征及其個數(shù)時,則引導(dǎo)學(xué)生自己通過觀察來感悟,學(xué)生學(xué)習(xí)的主動性和創(chuàng)造性得到了較好的體現(xiàn)。

          我在課上對于認(rèn)識因數(shù)和倍數(shù)的教學(xué)所花的時間比較多,雖然也完成了教學(xué)任務(wù),但是“想想做做”沒來得及完成,十分遺憾。

          因數(shù)和倍數(shù)的教學(xué)反思 篇16

          《倍數(shù)和因數(shù)》這一資料與原先教材比有了很大的不一樣,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù),而此刻是在未認(rèn)識整除的狀況下直接認(rèn)識倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分資料學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的資料。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、決定,需要一個長期的消化理解的過程。

          這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)帶給足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:

         。ㄒ唬┎僮鲗嵺`,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)

          我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不一樣的'長方形,再讓學(xué)生寫出不一樣的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的好處。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而構(gòu)成因數(shù)與倍數(shù)的好處。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

         。ǘ┳灾魈骄,好處建構(gòu),找倍數(shù)和因數(shù)

          整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的好處,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。

          新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)潛力,初步構(gòu)成合作與競爭的意識。

          找一個數(shù)因數(shù)的方法是本節(jié)課的難點,在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流在讓學(xué)生尋找,這樣就用了很多時光,最后就沒有很多的時光去練習(xí),我認(rèn)為雖然時光用的過多,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有必須困難,那里能夠充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自我獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按必須的次序進行。之后讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自我剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導(dǎo)和總結(jié)。

          (三)變式拓展,實踐應(yīng)用---—促進智能內(nèi)化

          練習(xí)的設(shè)計不僅僅緊緊圍繞教學(xué)重點,而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。

          由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地理解。教學(xué)之前我明白這節(jié)課時光會很緊,所以在備課的時候,我認(rèn)真鉆研了教材,仔細分析了教案,看哪些地方時光安排的能夠少一些,所以我在第一部分認(rèn)識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時光,直接出示,,實際效果我認(rèn)為是比較理想的。課上還就應(yīng)及時運用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自我的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師就應(yīng)及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。

        【因數(shù)和倍數(shù)的教學(xué)反思】相關(guān)文章:

        《因數(shù)和倍數(shù)》教學(xué)反思01-06

        因數(shù)和倍數(shù)教學(xué)反思10-11

        《倍數(shù)和因數(shù)》教學(xué)反思03-03

        蘇教版《倍數(shù)和因數(shù)》教學(xué)反思01-16

        【通用】因數(shù)和倍數(shù)教學(xué)反思07-17

        小學(xué)數(shù)學(xué)因數(shù)和倍數(shù)教學(xué)反思12-08

        《倍數(shù)與因數(shù)》教學(xué)反思03-31

        《因數(shù)與倍數(shù)》教學(xué)反思11-26

        《因數(shù)和倍數(shù)》教學(xué)設(shè)計12-03