【通用】因數(shù)和倍數(shù)教學(xué)反思
身為一位到崗不久的教師,課堂教學(xué)是我們的工作之一,對(duì)學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,我們?cè)撛趺慈懡虒W(xué)反思呢?以下是小編精心整理的因數(shù)和倍數(shù)教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
因數(shù)和倍數(shù)教學(xué)反思1
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了必須的整數(shù)知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。
課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不一樣的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。經(jīng)過(guò)學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭(zhēng)論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情景得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對(duì)于因數(shù)和倍數(shù)的'含義要貼合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說(shuō)被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
其次,厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中能夠直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說(shuō)2是因數(shù),12是倍數(shù),而必須說(shuō)誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù)。對(duì)于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既能夠在整數(shù)范圍內(nèi),也能夠在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。
本節(jié)課的不足之處:
1.練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。
2.對(duì)因數(shù)和倍數(shù)的含義還應(yīng)當(dāng)進(jìn)行歸納總結(jié)上升到用字母來(lái)表示。
因數(shù)和倍數(shù)教學(xué)反思2
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。
課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過(guò)學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:
第一種是分為兩類:
一類是商是整數(shù),另一類是商是小數(shù);
第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭(zhēng)論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對(duì)于因數(shù)和倍數(shù)的含義要符合兩個(gè)條件:
一是必須在整數(shù)除法中,
二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說(shuō)被除數(shù)是除數(shù)的.倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
其次,厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說(shuō)2是因數(shù),12是倍數(shù),而必須說(shuō)誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù)。
對(duì)于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。
本節(jié)課的不足之處:
1、練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。
2、對(duì)因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來(lái)表示。
因數(shù)和倍數(shù)教學(xué)反思3
《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識(shí)點(diǎn)較多,內(nèi)容較為抽象,對(duì)于學(xué)生來(lái)說(shuō)是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運(yùn)用“先學(xué)后教”的模式,達(dá)到課堂的高效,在課堂中我做了以下的嘗試。
一、領(lǐng)會(huì)意圖,做到用教材教。
我覺得作為一名教師,重要的是領(lǐng)會(huì)教材的編寫意圖,靈活的運(yùn)用教材,讓每個(gè)細(xì)節(jié)都能發(fā)揮它應(yīng)有的`作用。如教材是利用了一個(gè)簡(jiǎn)單的實(shí)物圖(2行飛機(jī),每行6架;3行飛機(jī),每行4架)引出了要研究的兩個(gè)乘法算式“2×6=12,3×4=12”直接給出了“誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問(wèn)題:“如果有12架飛機(jī),你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問(wèn)題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個(gè)算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個(gè)數(shù)的因數(shù)”的方法的滲透和引導(dǎo)。看來(lái)靈活的運(yùn)用教材,深放領(lǐng)會(huì)意圖,才能使教學(xué)更為輕松、高效!
二、模式運(yùn)用,做到靈活自然。
模式是一種思想或是引子,面對(duì)不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗(yàn),使模式不再是僵化的,機(jī)械的。只要是能促進(jìn)學(xué)生能力形成的東西,我們不能因?yàn)橐\(yùn)用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來(lái)。
如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計(jì)已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識(shí)的軌跡,那我們何不通過(guò)一句簡(jiǎn)短的過(guò)渡語(yǔ)讓學(xué)生進(jìn)入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計(jì)出兩個(gè)“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對(duì)比著去感受一個(gè)數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對(duì)知識(shí)的理解,同時(shí)也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!
因數(shù)和倍數(shù)教學(xué)反思4
不知不覺,我們又進(jìn)行了第二單元的學(xué)習(xí)。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊(cè)教材中變化最大的單元,要引起足夠的重視。
1、以往認(rèn)識(shí)因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù),F(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
2、以往數(shù)學(xué)教材中,概念教學(xué)的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個(gè)單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分?jǐn)?shù)的`意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學(xué)習(xí),改變了概念多而集中,抽象程度過(guò)高的現(xiàn)象。
3、以往求最大公約數(shù),最小公倍數(shù)時(shí),采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵(lì)方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。
可見,編者為體現(xiàn)新課標(biāo)精神對(duì)本部分內(nèi)容作了精心的調(diào)整,煞費(fèi)苦心,可是學(xué)完了本單元的第一部分和第二部分內(nèi)容,我對(duì)本單元的學(xué)習(xí)內(nèi)容有了小小的疑問(wèn)。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強(qiáng)。知道了什么是因數(shù)和倍數(shù),也會(huì)找一個(gè)數(shù)的因數(shù)和倍數(shù)了,那么就應(yīng)該從找因數(shù)和個(gè)數(shù)問(wèn)題上學(xué)習(xí)質(zhì)數(shù)和合數(shù)。教材對(duì)質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計(jì)較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個(gè)數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)?蔀槭裁丛谥虚g突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當(dāng)?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會(huì)比較好一些。
因數(shù)和倍數(shù)教學(xué)反思5
因數(shù)與倍數(shù)屬于數(shù)論中的知識(shí),是比較抽象的,學(xué)生學(xué)習(xí)理解起來(lái)有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認(rèn)識(shí)了乘法各部分名稱,對(duì)“倍”葉有了初步的認(rèn)識(shí),從而本課由此入手,讓學(xué)生由熟悉的知識(shí)經(jīng)驗(yàn)開始,結(jié)合問(wèn)題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的知識(shí)結(jié)構(gòu),體會(huì)到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。
在探索找一個(gè)數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會(huì)出“要按照一定的順序去找”才不會(huì)遺漏和重復(fù),本課制作了動(dòng)態(tài)的數(shù)軸圖,通過(guò)演示18的因數(shù)有1、18(閃動(dòng)),2、9(閃動(dòng)),3、6(閃動(dòng))學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時(shí)觀察區(qū)間,真正體會(huì)到了“找前了”這一學(xué)生難以真正理解的地方。
本課中還要注意到的就是學(xué)生在匯報(bào)找到了哪些數(shù)的因數(shù)時(shí),教師根據(jù)學(xué)生匯報(bào)所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時(shí)學(xué)生還不知道這些數(shù)的.概念,但這時(shí)給學(xué)生一個(gè)全面的正面印象,有的數(shù)因數(shù)個(gè)數(shù)多,有的少,不是一個(gè)數(shù)越大因數(shù)的個(gè)數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。
因數(shù)和倍數(shù)教學(xué)反思6
本節(jié)課是第二單元的第一課時(shí),第二單元的教學(xué)內(nèi)容較為抽象,很難結(jié)合生活實(shí)例或具體情境來(lái)進(jìn)行教學(xué),學(xué)生理解起來(lái)有一定的難度。加強(qiáng)對(duì)概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。還有要引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)去掌握這些知識(shí),而不是機(jī)械地記憶一堆支離破碎、毫無(wú)關(guān)聯(lián)的概念和結(jié)論。
今天這節(jié)課的教學(xué)的倍數(shù)和因數(shù)是講述兩個(gè)數(shù)之間的`一種相互依存關(guān)系,于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會(huì)從數(shù)學(xué)的角度去觀察事物、思考問(wèn)題,激發(fā)對(duì)數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學(xué)生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時(shí),我還出示了一個(gè)除法的算式,讓學(xué)生來(lái)找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
找出一個(gè)數(shù)的因數(shù)要做到不重復(fù)和不遺漏,有些學(xué)生還不能找全,沒有掌握方法,我在今后的教學(xué)中還要注意對(duì)學(xué)困生的輔導(dǎo)。
因數(shù)和倍數(shù)教學(xué)反思7
《因數(shù)和倍數(shù)》這一教學(xué)內(nèi)容是一節(jié)概念課。教材在引入因數(shù)和倍數(shù)的概念時(shí)是通過(guò)除法算式來(lái)引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。利用一個(gè)簡(jiǎn)單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過(guò)這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學(xué)生已有的'數(shù)學(xué)知識(shí)引出了新知識(shí),減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×12=12,2×6=12,3×4=12三個(gè)乘法算式說(shuō)出了誰(shuí)是誰(shuí)的因數(shù)、誰(shuí)是誰(shuí)的倍數(shù)后,教師緊接著提問(wèn):12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問(wèn):你是用什么方式找到12的因數(shù)的?在學(xué)生說(shuō)出方法后,為了讓學(xué)生探索出找一個(gè)因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報(bào)時(shí),能借此解決如何有序、不重復(fù)、不遺漏地找出一個(gè)數(shù)的因數(shù)。但在實(shí)際交流時(shí),學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因?yàn)?5的因數(shù)只有兩對(duì),無(wú)論怎樣找都不會(huì)遺漏。作為老師,我這時(shí)沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對(duì)一對(duì)地找很快找出這兩個(gè)數(shù)的因數(shù),另一部分卻在無(wú)序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。同時(shí)在練習(xí)中我設(shè)計(jì)了其中一道題是猜我的電話號(hào)碼,激發(fā)起學(xué)生的興趣,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個(gè)體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉。雖然在這個(gè)環(huán)節(jié)上花了比較多的時(shí)間,但對(duì)學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
這節(jié)課另一個(gè)給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個(gè)數(shù)的因數(shù)的特點(diǎn)時(shí),由于及時(shí)跟上個(gè)性化的語(yǔ)言評(píng)價(jià),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來(lái)。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個(gè)數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個(gè)數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時(shí)放手,會(huì)看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計(jì)綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
因數(shù)和倍數(shù)教學(xué)反思8
本課資料是認(rèn)識(shí)倍數(shù)與因數(shù),以及找一個(gè)數(shù)的倍數(shù)的方法!氨稊(shù)與因數(shù)”是整數(shù)學(xué)習(xí)中的重要概念,也是分?jǐn)?shù)學(xué)習(xí)中的重要基礎(chǔ)。
在教學(xué)時(shí),利用教材中的圖片,讓學(xué)生說(shuō)一說(shuō)從圖中能夠找到哪些數(shù),在比較中認(rèn)識(shí)自然數(shù)和整數(shù),使對(duì)數(shù)的.認(rèn)識(shí)進(jìn)一步系統(tǒng)化。之后,利用整數(shù)乘法認(rèn)識(shí)倍數(shù)與和因數(shù),在解決問(wèn)題過(guò)程中,引導(dǎo)學(xué)生列出算式。4x9=36,以這個(gè)整數(shù)乘法算式為例說(shuō)明倍數(shù)與因數(shù)的含義,最終,經(jīng)過(guò)教學(xué)活動(dòng)“找一找”、“分一分”,從而引出因數(shù)與倍數(shù)的關(guān)系,探索找一個(gè)數(shù)的倍數(shù)的方法。在教學(xué)中要向?qū)W生說(shuō)明:在研究倍數(shù)與因數(shù)時(shí),范圍限制為非零的自然數(shù)。引導(dǎo)學(xué)生體會(huì)一般能夠用乘法算式來(lái)找一個(gè)數(shù)的倍數(shù),要注意引導(dǎo)學(xué)生有序思考,讓學(xué)生領(lǐng)會(huì)倍數(shù)與因數(shù)是相互依存的關(guān)系,逐步讓學(xué)生體會(huì)到一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的。
因數(shù)和倍數(shù)教學(xué)反思9
這是自入職以來(lái)第一堂得到李老師指點(diǎn)的課。感覺得到李老師課堂上對(duì)學(xué)生信任。也讓我更深一步的體會(huì)到,只有學(xué)生自己找出來(lái)的規(guī)律,特點(diǎn),才能理解的更透徹,掌握的更牢固,應(yīng)用起來(lái)更有效率。平日里,沒有給學(xué)生充分的時(shí)間,很多規(guī)律甚至是老師直接告訴學(xué)生的,雖然課堂教學(xué)的速度有了,但是效率并不高,后期教師要花費(fèi)的時(shí)間更多。那才是真正的丟了西瓜撿芝麻!
下面從幾點(diǎn)來(lái)分析本節(jié)課
一、優(yōu)點(diǎn)
課堂掌控力不錯(cuò),教師的個(gè)人素質(zhì)也不錯(cuò)。
二、不足
1、 是除不盡的。但是課堂上,我卻當(dāng)做了能除盡的。思考出現(xiàn)這個(gè)錯(cuò)誤的原因,是自己對(duì)課堂、對(duì)學(xué)生的預(yù)設(shè)不足!
2、26是13和2的倍數(shù),13和2是26的因數(shù)------大家發(fā)現(xiàn)沒有,大的是倍數(shù),小的是因數(shù)!
我非常清楚,倍數(shù)、因數(shù)是有依存關(guān)系的,而不能單獨(dú)說(shuō),但是課堂上卻說(shuō)出了“大的是倍數(shù),小的是因數(shù)”這樣一句有問(wèn)題的話。失!
歸結(jié)原因,還是課堂太想投機(jī)取巧。作為一個(gè)引導(dǎo)學(xué)生入門的老師,在知識(shí)的門口,真的不能有絲毫差池,更不能為了一時(shí)的省事,而為后面的教學(xué)買下禍根!
三、除了錯(cuò)誤,還有很多做的復(fù)雜、不到位的地方。
1、開篇之時(shí),復(fù)習(xí)自然數(shù),是為本節(jié)課作知識(shí)鋪墊用的,但是,問(wèn)題中的“自然數(shù)有什么特點(diǎn)?”卻是一個(gè)設(shè)計(jì)失敗的問(wèn)題。已經(jīng)學(xué)到高等數(shù)學(xué)的我,自然之道,自然數(shù)的特點(diǎn)到底有多龐雜!根本不是一兩句話說(shuō)的清的,但是我卻問(wèn)了這樣一個(gè)問(wèn)題。
2、給定12張卡片列除法算式求商時(shí),可以限定時(shí)間30秒,看說(shuō)寫的又多又準(zhǔn)確。也就是說(shuō)能全員參與的`,就單獨(dú)。讓學(xué)生在數(shù)學(xué)作業(yè)紙上寫完后,可以抓條,然后教師可以挑選著在摘錄一些。這樣準(zhǔn)備充分,也可以為后面的分類打下堅(jiān)實(shí)的基礎(chǔ)。
3、找個(gè)一個(gè)數(shù)的因數(shù)時(shí),要先找,在訂正,最后讓學(xué)生說(shuō)說(shuō)做法。而后更正練習(xí),接著判斷,說(shuō)方法。只有清楚的說(shuō)出了方法,才能保證學(xué)生是真懂了。在這個(gè)過(guò)程中,還可以鼓勵(lì)學(xué)生總結(jié)一些自己的做法,比如用乘法找因數(shù),乘到幾就不乘了。用除法也是,除到幾就不除了。ㄟ@個(gè)數(shù)的中間位置)
4、本節(jié)課最好的量是到會(huì)找一個(gè)數(shù)的因數(shù)就可以了,接著歸納一個(gè)數(shù)因數(shù)的特點(diǎn)部分就拖堂了。內(nèi)容不能很好的在一堂課中充分的展現(xiàn)!
一堂課教會(huì)了我很多,尤其是在教學(xué)方法上,李老師后來(lái)的引導(dǎo),讓我清楚的看到了學(xué)生的聰明,學(xué)生的觀察力!要相信學(xué)生------首先要給學(xué)生時(shí)間去觀察,去思考,去發(fā)現(xiàn)!否則,學(xué)生的思維永遠(yuǎn)得不到真正的發(fā)展!能力無(wú)法得到充分的提升。
因數(shù)和倍數(shù)教學(xué)反思10
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。(1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的'學(xué)習(xí),而是反其道而行之,通過(guò)乘法算式來(lái)導(dǎo)入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過(guò)學(xué)習(xí)了解到以下信息:簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識(shí)基礎(chǔ),對(duì)整除的含義已經(jīng)有了比較清楚的認(rèn)識(shí),不出現(xiàn)整除的定義并不會(huì)對(duì)學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
雖然學(xué)生已接觸過(guò)整除與有余數(shù)的除法,但我班學(xué)生對(duì)“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學(xué)時(shí),補(bǔ)充了兩道判斷題請(qǐng)學(xué)生辨析:
11÷2=5……1。問(wèn):11是2的倍數(shù)嗎?為什么?因?yàn)?×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對(duì)嗎?為什么?
特別是第2小題極具價(jià)值。價(jià)值不僅體現(xiàn)在它幫助學(xué)生通過(guò)辨析明確了在研究因數(shù)和倍數(shù)時(shí),我們所說(shuō)的數(shù)都是指整數(shù)(一般不包括0),及時(shí)彌補(bǔ)了未進(jìn)行整除概念教學(xué)的知識(shí)缺陷,還通過(guò)此題對(duì)“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進(jìn)行了對(duì)比。
因數(shù)和倍數(shù)教學(xué)反思11
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是經(jīng)過(guò)除法算式來(lái)引出整除的概念,而此刻的人教版教材中沒有用數(shù)學(xué)語(yǔ)言給“整除”下定義,而是利用一個(gè)簡(jiǎn)單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,經(jīng)過(guò)這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。對(duì)于學(xué)生來(lái)說(shuō)是比較難掌握的資料。尤其對(duì)因數(shù)和倍數(shù)是一對(duì)相互依存的概念,不能單獨(dú)存在,不是很好理解。我經(jīng)過(guò)生活與數(shù)學(xué)之間的聯(lián)系,幫忙學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實(shí)例來(lái)幫忙學(xué)生對(duì)相互依存的理解,在描述因數(shù)和倍數(shù)的概念時(shí)就不會(huì)說(shuō)錯(cuò)了。對(duì)于這節(jié)課的教學(xué),我特別注意下頭幾個(gè)細(xì)節(jié)來(lái)幫忙學(xué)生理解因數(shù)和倍數(shù)的概念。
1、是我上課時(shí)特別注意讓學(xué)生明白什么情景下才能討論因數(shù)和倍數(shù)的概念。
2、是要學(xué)生注意區(qū)分乘法算式中的."因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號(hào)兩邊的整數(shù),但前者是相對(duì)"積"而言的,與"乘數(shù)"同義,能夠是小數(shù),而后者是相對(duì)于"倍數(shù)"而言的,兩者都只能是整數(shù)。
3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過(guò)的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣。能夠說(shuō)"15是3的倍數(shù)",也能夠說(shuō)"1。5是0。3的5倍",但我們只能說(shuō)"15是3的倍數(shù)",卻不能說(shuō)"1。5是0的倍數(shù)"。在課堂中反復(fù)強(qiáng)調(diào),幫忙學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來(lái)對(duì)這組概念就理解透徹了,就不會(huì)模糊了。
因數(shù)和倍數(shù)教學(xué)反思12
【教學(xué)內(nèi)容】
人教版數(shù)學(xué)五年級(jí)下冊(cè)P12一14,練習(xí)二。
【教學(xué)過(guò)程】
一、操作空間,初步感知。
1.同桌用12塊完全一樣的小正方形拼成一個(gè)長(zhǎng)方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。
2.學(xué)生動(dòng)手操作,并與同桌交流擺法。
3.請(qǐng)用算式表達(dá)你的擺法。
匯報(bào):1×12=12,2×6=12,3×4=12。
【評(píng)析】通過(guò)讓學(xué)生動(dòng)手操作、想象、表達(dá)等環(huán)節(jié),既為新知探索提供材料,又孕育求一個(gè)數(shù)的因數(shù)的思考方法。
二、探索空間,理解新知。
1.理解因數(shù)和倍數(shù)。
(1)觀察3×4=12,你能從數(shù)學(xué)的角度說(shuō)說(shuō)它們之間的關(guān)系嗎? 師根據(jù)學(xué)生的表達(dá)完成以下板書: 3是12的因數(shù) 12是3的倍數(shù) 4是12的因數(shù) 12是4的倍數(shù) 3和4是12的因數(shù) 12是3和4的倍數(shù)
(2)用因數(shù)和倍數(shù)說(shuō)說(shuō)算式1×12=12,2×6=12的關(guān)系。
(3)觀察因數(shù)和倍數(shù)的相互關(guān)系。揭示:研究因數(shù)和倍數(shù)時(shí),所指的數(shù)是整數(shù)(一般不包括O)。
2.求一個(gè)數(shù)的因數(shù)。
(1)出示2,5,12,15,36。從這些數(shù)中找一找誰(shuí)是誰(shuí)的因數(shù)。 學(xué)生匯報(bào)。
師:2和12是36的因數(shù),找1個(gè)、2個(gè)不難,難就難在把36所有的因數(shù)全部找出來(lái),請(qǐng)同學(xué)們找出36的所有因數(shù)。
出示要求:
①可獨(dú)立完成,也可同桌合作。
、诳山柚鷦偛耪页12的所有因數(shù)的方法。
、蹖懗36的所有因數(shù)。
、芟胍幌耄鯓诱也拍鼙WC既不重復(fù),又不遺漏。 教師巡視,展示學(xué)生幾種答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比較喜歡哪一種答案?為什么?
用什么方法找既不重復(fù)又不遺漏。(按順序一對(duì)一對(duì)找,一直找到兩個(gè)因數(shù)相差很小或相等為止)
師:有序思考更能準(zhǔn)確找出一個(gè)數(shù)的所有因數(shù)。 完成板書:描述式、集合式。
(3)30的因數(shù)有哪些?
【評(píng)析】學(xué)生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測(cè)。通過(guò)展示、比較不同的答案,發(fā)現(xiàn)了按順序一對(duì)一對(duì)找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。
3.求一個(gè)數(shù)的倍數(shù)。
(1)3的倍數(shù)有:——,怎樣
有序地找,有多少個(gè)?
找一個(gè)數(shù)的倍數(shù),用1,2,3,4?分別乘這個(gè)數(shù)。 (2)練一練:6的倍數(shù)有: ,40以內(nèi)6的倍數(shù)有:一o
【評(píng)析】
由于有了有序思考的基礎(chǔ),求一個(gè)數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。
4.發(fā)現(xiàn)規(guī)律。
觀察上面幾個(gè)數(shù)的因數(shù)和倍數(shù)的例子,你對(duì)它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)? 根據(jù)學(xué)生匯報(bào),歸納:一個(gè)數(shù)的最小因數(shù)是I,最大因數(shù)是它本身;一個(gè)數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。
【評(píng)析】
通過(guò)觀察板書上幾個(gè)數(shù)的因數(shù)和倍數(shù),放手讓學(xué)生發(fā)現(xiàn)規(guī)律,既突出了學(xué)生的主體地位,又培養(yǎng)了學(xué)生觀察、歸納的能力。 三、歸納空間,內(nèi)化新知。
師生共同總結(jié):
(1)因數(shù)和倍數(shù)是相互的,不能單獨(dú)存在。
(2)找一個(gè)數(shù)的因數(shù)和倍數(shù),應(yīng)有序思考。
四、拓展空間,應(yīng)用新知。
1、15的因數(shù)有:——,15的倍數(shù)有:——。
2.判斷。
(1)6是因數(shù),24是倍數(shù)。( )
(2)3.6÷4=0.9,所以3.6是4的因數(shù)。 ( )
(3)1是1,2,3,4?的因數(shù)。 ( )
(4)一個(gè)數(shù)的最小倍數(shù)是21,這個(gè)數(shù)的因數(shù)有1,5,25。( )
3、選用4,6,8,24,1,5中的`一些數(shù)字,用今天學(xué)習(xí)的知識(shí)說(shuō)一句話。
4、舉座位號(hào)起立游戲。
(1)5的倍數(shù)。
(2)48的因數(shù)。
(3)既是9的倍數(shù),又是36的因數(shù)。
(4)怎樣說(shuō)一句話讓還坐著的同學(xué)全部起立。
【評(píng)析】
本環(huán)節(jié)的前3題側(cè)重于鞏固新知,后2題側(cè)重于發(fā)展思維。通過(guò)“說(shuō)一句話”和“起立游戲”,展現(xiàn)了學(xué)生的個(gè)性思維,體現(xiàn)了知識(shí)的應(yīng)用價(jià)值。
【反思】
本課教學(xué)設(shè)計(jì)重在讓學(xué)生通過(guò)自主探索,掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法,體驗(yàn)有序思考的重要性。體現(xiàn)了以下兩個(gè)特點(diǎn): 一、留足空間,讓探索有質(zhì)量。
留足思維空間,才能充分調(diào)動(dòng)多種感官參與學(xué)習(xí),充分發(fā)揮知識(shí)經(jīng)驗(yàn)和生活經(jīng)驗(yàn),使探索成為知識(shí)不斷提升、思維不斷發(fā)展、情感不斷豐富的過(guò)程。第一,把教材中的飛機(jī)圖改為拼長(zhǎng)方形,讓同桌同學(xué)借助12塊完全一樣的正方形拼成一個(gè)長(zhǎng)方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個(gè)同學(xué)找出36的所有因數(shù),由于個(gè)人經(jīng)驗(yàn)和思
維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個(gè)數(shù)的因數(shù)的思考方法。第三:通過(guò)觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對(duì)象,保證了觀察的目的性。第四:讓學(xué)生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識(shí)說(shuō)一句話”。不拘形式的說(shuō)話空間,不僅體現(xiàn)了差異性教學(xué),更是體現(xiàn)了不同的人在數(shù)學(xué)上的不同發(fā)展。 二、適度引導(dǎo),讓探索有方向。
引導(dǎo)與探索并不矛盾,探索前的適度引導(dǎo)正是讓探索走得更遠(yuǎn)。探索12塊完全一樣的正方形拼成一個(gè)長(zhǎng)方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導(dǎo),是尊重學(xué)生不同思維的有效引導(dǎo)。
在找36的所有因數(shù)時(shí),教師出示4條要求,既是引導(dǎo)學(xué)生思考的方向,又是提醒學(xué)生探索的任務(wù)。在讓學(xué)生觀察幾個(gè)數(shù)的因數(shù)和倍數(shù)時(shí),引導(dǎo)學(xué)生觀察最大數(shù)和最小數(shù),有什么發(fā)現(xiàn)?這樣的引導(dǎo),避免了學(xué)生的盲目觀察?梢,適度的引導(dǎo),保證了自主探索思維的方向性和順暢性。
整堂課,學(xué)生想象豐富、思維活躍、思考有序。整個(gè)認(rèn)知過(guò)程是體驗(yàn)不斷豐富、概念不斷形成、知識(shí)不斷建構(gòu)的過(guò)程。
因數(shù)和倍數(shù)教學(xué)反思13
我在教學(xué)時(shí)做到了以下幾點(diǎn):
(1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。
今天在教學(xué)前,我讓學(xué)生學(xué)說(shuō)話,就是培養(yǎng)學(xué)生對(duì)語(yǔ)言的概括能力和對(duì)事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的`認(rèn)識(shí)倍數(shù)與因數(shù)的關(guān)系,
(2)改動(dòng)呈現(xiàn)倍數(shù)和因數(shù)概念的方式。
我改變了例題,用杯子翻動(dòng)的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
(3)根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個(gè)數(shù)的因數(shù)的方法
雖然學(xué)生不能有序地找出來(lái),但是基本能全部找到,再此基礎(chǔ)上讓體會(huì)有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
(4)設(shè)計(jì)有趣游戲活動(dòng),擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。
譬如“找朋友”游戲,答案不唯一,學(xué)生思考問(wèn)題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號(hào)數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),,如果學(xué)生的學(xué)號(hào)數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來(lái)。最后問(wèn)能不能想個(gè)辦法讓所有的學(xué)生都站起來(lái)。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對(duì)問(wèn)題積極思考,享受了數(shù)學(xué)思維的快樂(lè)
因數(shù)和倍數(shù)教學(xué)反思14
一、教材與知識(shí)點(diǎn)的對(duì)比與區(qū)別。
1、對(duì)比新版教材知識(shí)設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識(shí)是傳統(tǒng)教學(xué)內(nèi)容但教材在傳承以往優(yōu)秀做法的同時(shí)也進(jìn)行了較大幅度的改動(dòng)。無(wú)論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計(jì)上都獨(dú)具匠心。“因數(shù)與倍數(shù)”的認(rèn)識(shí)與原教材有以下兩方面的區(qū)別1新課標(biāo)教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學(xué)習(xí)而是反其道而行之通過(guò)乘法算式來(lái)導(dǎo)入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的.變化原因何在教師必須要認(rèn)真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過(guò)學(xué)習(xí)教參了解到以下信息學(xué)生的原有知識(shí)基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對(duì)整除的含義有比較清楚的認(rèn)識(shí)不出現(xiàn)整除的定義并不會(huì)對(duì)學(xué)生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學(xué)化定義。
2、相似概念的對(duì)比。1彼“因數(shù)”非此“因數(shù)”。在同一個(gè)乘法算式中兩者都是指乘號(hào)兩邊的整數(shù)但前者是相對(duì)于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對(duì)于“倍數(shù)”而言的與以前所說(shuō)的“約數(shù)”同義說(shuō)“X是X的因數(shù)”時(shí)兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣。我們可以說(shuō)“1.5是0.3的5倍”但不能說(shuō)”1.5是0.3的倍數(shù)”。我們?cè)谇笠粋(gè)數(shù)的倍數(shù)時(shí)運(yùn)用的方法與“求一個(gè)數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。
二、教法的運(yùn)用實(shí)踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對(duì)與本知識(shí)點(diǎn)的概念是人為規(guī)定的一個(gè)范圍因此對(duì)于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求而且給學(xué)生一個(gè)直觀的感受!耙驍(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無(wú)關(guān)與分?jǐn)?shù)無(wú)關(guān)與負(fù)數(shù)無(wú)關(guān)雖沒學(xué)但有小部分學(xué)生了解。同時(shí)強(qiáng)調(diào)——非0——因?yàn)?乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗(yàn)就是對(duì)于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法讓學(xué)生清晰明確。因此用直接導(dǎo)入法先復(fù)習(xí)自然數(shù)的概念再寫出乘法算式3×4=12說(shuō)明在這個(gè)算式中3和4是12的因數(shù)12是3和4的倍數(shù)。
2、在進(jìn)行延續(xù)性教學(xué)中可以讓學(xué)生探究怎么樣找一個(gè)數(shù)的因數(shù)和倍數(shù)在板書要講究一個(gè)格式與對(duì)稱性這樣在對(duì)學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個(gè)數(shù)的有限與無(wú)限的對(duì)比再就是發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。
【篇三:因數(shù)和倍數(shù)2教學(xué)反思】
因數(shù)和倍數(shù)是五年級(jí)下冊(cè)第二單元的教學(xué)內(nèi)容,由于知識(shí)較為抽象,學(xué)生不易理解,因此我在教學(xué)時(shí)做到了以下幾點(diǎn):
(1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。
今天在教學(xué)前,我讓學(xué)生學(xué)說(shuō)話,就是培養(yǎng)學(xué)生對(duì)語(yǔ)言的概括能力和對(duì)事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識(shí)倍數(shù)與因數(shù)的關(guān)系,
。2)改動(dòng)呈現(xiàn)倍數(shù)和因數(shù)概念的`方式。我改變了例題,用杯子翻動(dòng)的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
。3)根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個(gè)數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來(lái),但是基本能全部找到,再此基礎(chǔ)上讓體會(huì)有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
。4)設(shè)計(jì)有趣游戲活動(dòng),擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學(xué)生思考問(wèn)題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號(hào)數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學(xué)生的學(xué)號(hào)數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來(lái)。最后問(wèn)能不能想個(gè)辦法讓所有的學(xué)生都站起來(lái)。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對(duì)問(wèn)題積極思考,享受了數(shù)學(xué)思維的快樂(lè)。
因數(shù)和倍數(shù)教學(xué)反思15
《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學(xué)時(shí),我首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長(zhǎng)方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作到直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成倍數(shù)與因數(shù)的意義,使學(xué)生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說(shuō)明誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù),學(xué)生很容易接受,再通過(guò)學(xué)生自己舉例和交流,進(jìn)一步加深對(duì)倍數(shù)和因數(shù)意義的理解。從學(xué)生的反應(yīng)和課堂氣氛來(lái)看,教學(xué)效果還是不錯(cuò)的。
能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的倍數(shù)和因數(shù),是本課的教學(xué)難點(diǎn)。教學(xué)時(shí),我先讓學(xué)生自己找3的倍數(shù),匯報(bào)交流后通過(guò)對(duì)比(一種是沒有順序,一種是有序的)得出如何有序地找一個(gè)數(shù)的倍數(shù)的方法。對(duì)于倍數(shù),學(xué)生在以前的`學(xué)習(xí)中已有所接觸,所以學(xué)生很容易學(xué),用的時(shí)間也比較少。
對(duì)于找一個(gè)數(shù)的因數(shù),學(xué)生最容易犯的錯(cuò)誤就是漏找,即找不全。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過(guò)程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路。學(xué)生通過(guò)觀察,發(fā)現(xiàn)當(dāng)找到的兩個(gè)自然數(shù)非常接近時(shí),就不需要再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn)。
【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:
《倍數(shù)和因數(shù)》教學(xué)反思03-03
《因數(shù)和倍數(shù)》教學(xué)反思01-06
因數(shù)和倍數(shù)的教學(xué)反思02-22
蘇教版《倍數(shù)和因數(shù)》教學(xué)反思01-16
因數(shù)和倍數(shù)教學(xué)反思(15篇)10-04
小學(xué)數(shù)學(xué)因數(shù)和倍數(shù)教學(xué)反思12-08