抽屜原理教學設(shè)計
在教學工作者開展教學活動前,時常需要準備好教學設(shè)計,借助教學設(shè)計可以更大幅度地提高學生各方面的能力,從而使學生獲得良好的發(fā)展。那么你有了解過教學設(shè)計嗎?下面是小編為大家整理的抽屜原理教學設(shè)計,歡迎大家借鑒與參考,希望對大家有所幫助。
抽屜原理教學設(shè)計1
教學目標:
1.知識與能力目標:
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學活動,建立數(shù)學模型,發(fā)現(xiàn)規(guī)律。滲透“建!彼枷。
2.過程與方法目標:
經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力。
3.情感、態(tài)度與價值觀目標:
通過“抽屜原理”的靈活應(yīng)用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。
教學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學準備:教具:5個杯子,6根小棒;學具:每組5個杯子,6根小棒。
教學過程:
一、游戲激趣,初步體驗。
師:同學們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學上來各抽一張,我們來驗證一下。如果再請五位同學來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊藏著一個非常有趣的數(shù)學原理,想不想研究啊?
二、操作探究,發(fā)現(xiàn)規(guī)律。
。ㄒ唬┙(jīng)歷“抽屜原理”的探究過程,理解原理。
1.研究小棒數(shù)比杯子數(shù)多1的情況。
師:今天這節(jié)課我們就用小棒和杯子來研究。
師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?
學生分組操作,并把操作的結(jié)果記錄下來。
請一個小組匯報操作過程,教師在黑板上記錄。
師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。
師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?
學生分組操作,并把操作的結(jié)果記錄下來。
請一個小組代表匯報操作過程,教師在黑板上記錄。
師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?
師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結(jié)果?
師:怎樣驗證猜測的結(jié)果對不對,你又什么好方法?引導學生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結(jié)果:6÷5=1……1
師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?
師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會有什么樣的結(jié)果呢?
2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。
師:如果把5根小棒放在3個杯子里,會有什么結(jié)果?
引導:先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?
師:把7根小棒放在3個杯子里,會有什么結(jié)果呢?為什么?
3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。
師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結(jié)果?
小組內(nèi)討論,再請同學說結(jié)果和理由。
4、總結(jié)規(guī)律。
師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?
總結(jié):把m個物體放在n個抽屜里(m﹥n),總有一個抽屜至少有“商+1”個物體。
5、介紹抽屜原理。
“抽屜原理”又稱“鴿巢原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的.,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。
三、應(yīng)用“抽屜原理”,感受數(shù)學的魅力。
1、把5本書放進2個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?為什么?
先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。
只鴿子飛回3個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?
3、向東小學六年級共有370名學生,其中六(2)班有49名學生。請問下面兩人說的對嗎?為什么?
。1)六年級里至少有兩人的生日是同一天。
(2)六(2)班中至少有5人是同一個月出生的。
4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?
5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學的抽屜原理來解釋嗎?
四、全課小結(jié)。
說一說:今天這節(jié)課,我們又學習了什么新知識?(師生共同對本節(jié)課的內(nèi)容進行小結(jié))
五、布置作業(yè)。
課本73頁練習十二第題。
六、板書設(shè)計。
數(shù)學廣角——抽屜原理
抽屜原理教學設(shè)計2
一、教學內(nèi)容
這一冊教材包括下面一些內(nèi)容:負數(shù)、圓柱與圓錐、比例、統(tǒng)計、數(shù)學廣角、整理和復習等。
教學重點:百分數(shù)的應(yīng)用、圓柱的側(cè)面積和表面積的計算方法、圓柱和圓錐的體積計算方法、比例的意義和基本性質(zhì)、正比例和反比例、扇形統(tǒng)計圖、轉(zhuǎn)化的解題策略以及總復習的四個板塊的系列內(nèi)容。
教學難點:圓柱和圓錐體積計算方法的推導、成正比例和反比例量的判斷、用方向和距離確定位置、眾數(shù)和中位數(shù)平均數(shù)、解題策略的靈活運用。
二、教學目標
這一冊教材的教學目標是讓學生:
1、了解負數(shù)的意義,會用負數(shù)表示一些日常生活中的問題。
2、理解比例的意義和基本性質(zhì),會解比例,理解正比例和反比例的意義,能夠判斷兩種量是否成正比例或反比例,會用比例知識解決比較簡單的實際問題;能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標系的方格紙上畫圖,并能根據(jù)其中一個量的值估計另一個量的值。
3、會看比例尺,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小。
4、認識圓柱、圓錐的特征,會計算圓柱的表面積和圓柱、圓錐的體積。
5、能從統(tǒng)計圖表準確提取統(tǒng)計信息,正確解釋統(tǒng)計結(jié)果,并能作出正確的判斷或簡單的預測;初步體會數(shù)據(jù)可能產(chǎn)生誤導。
6、經(jīng)歷從實際生活中發(fā)現(xiàn)問題、提出問題、解決問題的過程,體會數(shù)學在日常生活中的作用,初步形成綜合運用數(shù)學知識解決問題的能力。
7、經(jīng)歷對“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題,發(fā)展分析、推理的能力。
8、通過系統(tǒng)的整理和復習,加深對小學階段所學的數(shù)學知識的理解和掌握,形成比較合理的、靈活的計算能力,發(fā)展思維能力和空間觀念,提高綜合運用所學數(shù)學知識解決問題的能力。
9、體會學習數(shù)學的樂趣,提高學習數(shù)學的興趣,建立學好數(shù)學的信心。
10、養(yǎng)成認真作業(yè)、書寫整潔的良好習慣。
三、教材分析
在數(shù)與代數(shù)方面,這一冊教材安排了負數(shù)和比例兩個單元。結(jié)合生活實例使學生初步認識負數(shù),了解負數(shù)在實際生活中的應(yīng)用。比例的教學,使學生理解比例、正比例和反比例的概念,會解比例和用比例知識解決問題。
在空間與圖形方面,這一冊教材安排了圓柱與圓錐的教學,在已有知識和經(jīng)驗的基礎(chǔ)上,使學生通過對圓柱、圓錐特征和有關(guān)知識的探索與學習,掌握有關(guān)圓柱表面積,圓柱、圓錐體積計算的基本方法,促進空間觀念的進一步發(fā)展。
在統(tǒng)計方面,本冊教材安排了有關(guān)數(shù)據(jù)可能產(chǎn)生誤導的內(nèi)容。通過簡單事例,使學生認識到利用統(tǒng)計圖表雖便于作出判斷或預測,但如不認真分析也有可能獲得不準確的信息導致錯誤判斷或預測,明確對統(tǒng)計數(shù)據(jù)進行認真、客觀、全面的分析的重要性。
在用數(shù)學解決問題方面,教材一方面結(jié)合圓柱與圓錐、比例、統(tǒng)計等知識的學習,教學用所學的知識解決生活中的簡單問題;另一方面安排了“數(shù)學廣角”的教學內(nèi)容,引導學生通過觀察、猜測、實驗、推理等活動,經(jīng)歷探究“抽屜原理”的過程,體會如何對一些簡單的實際問題“模型化”,從而學習用“抽屜原理”加以解決,感受數(shù)學的魅力,發(fā)展學生解決問題的能力。
本冊教材根據(jù)學生所學習的數(shù)學知識和生活經(jīng)驗,安排了多個數(shù)學綜合應(yīng)用的實踐活動,讓學生通過小組合作的探究活動或有現(xiàn)實背景的活動,運用所學知識解決問題,體會探索的樂趣和數(shù)學的.實際應(yīng)用,感受用數(shù)學的愉悅,培養(yǎng)學生的數(shù)學應(yīng)用意識和實踐能力。
整理和復習單元是在完成小學數(shù)學的全部教學內(nèi)容之后,引導學生對所學內(nèi)容進行一次系統(tǒng)的、全面的回顧與整理,這是小學數(shù)學教學的一個重要環(huán)節(jié)。通過整理和復習,使原來分散學習的知識得以梳理,由數(shù)學的知識點串成知識線,由知識線構(gòu)成知識網(wǎng),從而幫助學生完善頭腦中的數(shù)學認知結(jié)構(gòu),為初中的數(shù)學學習打下良好的基礎(chǔ);同時進一步提高學生綜合運用所學知識分析問題和解決問題的能力。
四、學情分析
本班共有學生29人,大部分學生對數(shù)學有上進心;有些學生的學習態(tài)度還需不斷端正;有部分學生自覺性不夠,上課注意力不集中;不能及時完成作業(yè)等;還有個別學生(胡志強、裴玉琴、陳建宏)基礎(chǔ)知識掌握不夠扎實,學習數(shù)學有很大困難。所以在新的學期里,在端正學生學習態(tài)度的同時,應(yīng)加強培養(yǎng)他們的各種學習數(shù)學的能力,利用小組討論的學習方式,使學生在討論中人人參與,各抒己見,互相啟發(fā), 自己找出解決問題的方法,體驗學習數(shù)學的快樂。
五、教學方法:
教學方法:
1、創(chuàng)設(shè)愉悅的教學情境,激發(fā)學生學習的興趣。提倡學法的多樣性,關(guān)注學生的個人體驗。
2、在集體備課基礎(chǔ)上,還應(yīng)同年級老師交換聽課,及時反思,真正領(lǐng)會教學設(shè)計意圖,提高駕御課堂的能力。教師應(yīng)轉(zhuǎn)變觀念,采用“激勵性、自主性、創(chuàng)造性”教學策略,以問題為線索,恰當運用教材、媒體、現(xiàn)實材料突破重點、難點,變多講多練,為精講精練,真正實現(xiàn)師生互動、生生互動,從而調(diào)動學生積極主動學習,提高教與學的效益。
3、不增減課程和課時,不提高要求,不購買其他復習資料,不留機械、重復、懲罰性作業(yè)和作業(yè)總量不超過規(guī)定時間,課堂訓練形式的多樣化,重視一題多解,從不同角度解決問題。
4、加強基礎(chǔ)知識的教學,使學生切實掌握好這些基礎(chǔ)知識。本學期要以新的教學理念,為學生的持續(xù)發(fā)展提供豐富的教學資源和空間。要充分發(fā)揮教材的優(yōu)勢,在教學過程中,密切數(shù)學與生活的聯(lián)系,確立學生在學習中的主體地位,創(chuàng)設(shè)愉悅、開放式的教學情境,使學生在愉悅、開放式的教學情境中滿足個性化學習需求,從而達到掌握基礎(chǔ)知識基本技能,培養(yǎng)學生創(chuàng)新意識和實踐能力的目的。
5、在教學中注意采用開放式教學,培養(yǎng)學生根據(jù)具體情境選擇適當方法解決實際問題的意識。如通過一題多解、一題多變、一題多問、一題多編等途徑,拓寬學生的知識面,溝通知識之間的內(nèi)在聯(lián)系,培養(yǎng)學生的應(yīng)變能力。
6、練習的安排,要由淺入深,體現(xiàn)層次性。對優(yōu)生、學困生都要體現(xiàn)有所指導。增強數(shù)學實踐活動,讓學生認識數(shù)學知識與實際生活的關(guān)系,使學生感到生活中時時處處有數(shù)學,用數(shù)學的實際意義來誘發(fā)和培養(yǎng)學生熱愛數(shù)學的情感。
抽屜原理教學設(shè)計3
導學內(nèi)容:P70——71例1、例2,完成做一做及練習十二1、2題
導學目標
1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、通過“抽屜原理”的靈活應(yīng)用感受數(shù)學的魅力。
導學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
導學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
預習學案
同學們玩過撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說:這5張牌至少有兩張是同花色,大家相信嗎?
導學案
通過今天的學習,你想知道些什么?
自主操作探究新知
。ㄒ唬┗顒1
課件出示:
把3本書進2個抽屜中,有幾種方法?請同學們放一放,再把你的想法在小組內(nèi)交流。
1、學生動手操作,師巡視,了解情況。
2、匯報交流說理活動
你們有什么發(fā)現(xiàn)?誰能說說看?
根據(jù)學生的回答用數(shù)字在黑板上記錄。板書:(3,0)(2,1)(1,2,)(0,3)
還可以用什么方法記錄?我把用圖記錄的用課件展示出來。
、僭僬J真觀察記錄,還有什么發(fā)現(xiàn)?
。ǹ傆幸粋抽屜里至少有2本書。)
②怎樣放可以一次得出結(jié)論?(啟發(fā)學生用平均分的放法,引出用除法計算。)板書:3÷2=1(本)……1(本)
③這種方法是不是很快就能確定總有一個抽屜里至少有幾本書呢?(學生交流)
、馨4本書放進3個抽屜里呢?還用擺嗎?板書:4÷3=1(本)……1(本)
、菡n件出示:把6本書放進5個抽屜呢?
把7本書放進6個抽屜呢?
把10本書放進9個抽屜呢?
把100本書放進99個抽屜呢?
板書:7÷6=1(本)……1(本)
10÷9=1(本)……1(本)
100÷99=1(本)……1(本)
、抻^察這些算式你發(fā)現(xiàn)了什么規(guī)律?
預設(shè)學生說出:至少數(shù)=商+余數(shù)
師:是不是這個規(guī)律呢?我們來試一試吧!
3、深化探究得出結(jié)論
課件出示:7只鴿子飛回5個鴿籠,至少有兩只鴿子要飛進同一個鴿籠里,為什么?
①學生活動
、诮涣髡f理活動
、鄣降资恰吧碳佑鄶(shù)”還是“商加1”?誰的結(jié)論對呢?在小組里進行研究、討論。
④誰能說清楚?板書:5÷3=1(只)……2(只)至少數(shù)=商+1
。ǘ┗顒佣
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
分組操作后匯報
板書:5÷2=2(本)……1(本)
7÷2=3(本)……1(本)
9÷2=4(本)……1(本)
那么探究到現(xiàn)在,大家認為怎樣才能確定總有一個抽屜至少有幾本書?
。ㄖ辽贁(shù)=商+1)
我同意大家的討論。我們這個發(fā)現(xiàn)就是有趣的“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀德國數(shù)學家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實際問題中有著廣泛的應(yīng)用。用它可以解決許多有趣的問題,讓我們來試試好嗎?
靈活應(yīng)用解決問題
1、解釋課前提出的'游戲問題。
2、8只鴿子飛回3個鴿舍,不管怎樣分,總有一個鴿舍至少有幾只鴿子?
3、任意13人中,至少有兩人的出生月份相同。為什么?
4、任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?
暢談感受:同學們,今天這節(jié)課有什么感受?
課堂檢測
一、填空
1、7只鴿子飛進5個鴿舍,至少有( )只鴿子要飛進同伴的鴿舍里。
2、有9本書,要放進2個抽屜里,必須有一個抽屜至少要放( )本書。
3、四年級兩個班共有73名學生,這兩個班的學生至少有( )人是同一月出生的。
4、任意給出3個不同的自然數(shù),其中一定有2個數(shù)的和是( )數(shù)。
二、選擇
1、5個人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。
A、60 B、61 C、62 D、59
2、3種商品的總價是13元,每種商品的價格都是整數(shù),至少有一種商品的價格不低于( )元。
A、3 B、4 C、5 D、無法確定
三、解決問題
1、現(xiàn)有5把鎖的各1把鑰匙混在一起跟鎖對不上號了,請問最少試幾次就可能全部對上號?
2、六、一班四組有男女同學各5名,把他們的名字分別用10個數(shù)字代替,至少要點幾個數(shù)字,才能保證叫到兩名男生或兩名女生?
課后拓展
1、六、二班有學生35人,李老師至少要準備多少本練習本,才能保證有一個人的練習本在兩本或兩本以上?
2、從1、2、3……100,這100個連續(xù)自然數(shù)中,任意取出51個不相同的數(shù),其中必有兩個數(shù)互質(zhì),這是為什么呢?
板書設(shè)計
抽屜原理
5÷2=2……1至少有3只
7÷2=3……1至少有4只
9÷2=4……1至少有5只
11÷2=5……1至少有6只
至少數(shù)=商數(shù)+1
抽屜原理教學設(shè)計4
教學內(nèi)容:
人教版六年級下冊第五單元數(shù)學廣角
教學目標:
1、初步了解“抽屜原理”。
2、引導學生用操作枚舉或假設(shè)的方法探究“抽屜原理”的一般規(guī)律。
3、會用抽屜原理解決簡單的實際問題。
4、經(jīng)歷從具體的抽象的探究過程,初步了解抽屜原理,提高學生又根據(jù)有條理的進行思考和推理的能力,體會比較的學習方法。
教學重點:抽屜原理的理解和簡單應(yīng)用。
教學難點:找出實際問題與抽屜原理的內(nèi)在聯(lián)系。
教學過程:
一、開展小游戲,引入新課。
師:在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?
師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩位同學”我說得對嗎?
生:對!
師:想知道老師為什么會做出如此準確的判斷嗎?其實這里面蘊含著一個有趣的數(shù)學原理——抽屜原理。
二、實驗探索
第一步:研究4枝鉛筆放進3個文具盒,有哪些不同的放法?你們又能從這些方法中發(fā)現(xiàn)什么有趣的現(xiàn)象?
1、(出示)師:把4枝筆放進3個文具盒,有哪些不同的放法?(請一生示范)你們又能從這些放法中發(fā)現(xiàn)什么有趣的現(xiàn)象?
2、師:接下來,就請同學們以小組為單位進行實驗操作,并把放法和發(fā)現(xiàn)填在記錄卡上。
放法
文具盒1
文具盒2
文具盒3
最多放幾枝
A
B
C
D
我們的發(fā)現(xiàn)
3、小組匯報交流。
。4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)
生:不管怎么放,總有1個文具盒里至少有2枝鉛筆。
師:“總有”是什么意思?
生:一定有。
師:“至少”是什么意思?
生:不少于2枝,可能是3枝或4枝。
生小結(jié):把4枝鉛筆放進3個文具盒,總有一個文具盒至少放進2枝鉛筆。(最多有2枝或2枝以上)
4、師:把4枝筆飯放進3個文具盒里,不管怎么放,總有一個文具盒里至少有2枝鉛筆。這是我們通過實際操作發(fā)現(xiàn)了這個結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結(jié)論,找出至少數(shù)呢?
生:我們發(fā)現(xiàn)如果每個文具盒里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個文具盒里,總有一個文具盒里至少有2枝鉛筆。
。▽W生操作演示)
師:這種分法,實際就是先怎么分的?
生眾:平均分
師:為什么要先平均分?
生1:要想發(fā)現(xiàn)存在著“總有一個文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那個文具盒里,一定會出現(xiàn)“總有一個文具盒里一定至少有2枝”。
生2:這樣分,只分一次就能確定總有一個文具盒至少有幾枝筆了。
把筆盡量每個文具盒里都放,還要盡量平均放。怎樣用算式表示呢?
4÷3=1……11+1=2
5、那照這樣的思路:把6枝鉛筆放進5個文具盒,怎樣想?(用鉛筆操作演示)6÷5=1……11+1=2
把7枝鉛筆放進6個文具盒,怎樣想?……
100枝鉛筆放進99個文具盒呢?
師提問:發(fā)現(xiàn)了什么規(guī)律?
生小結(jié),師整理:鉛筆數(shù)比文具盒數(shù)多1,不管怎么放,總有一個文具盒里至少放進2枝鉛筆。(同桌之間說一說)
第二步:研究鉛筆數(shù)比文具盒數(shù)不是多1的現(xiàn)象。
1、師:研究到這兒,還想繼續(xù)研究嗎?還有哪些值得我們繼續(xù)研究的問題?(生自主提問:如不是多1,什么是抽屜原理等等。)
2、師:如果鉛筆數(shù)比文具盒數(shù)不是多1,而是多2、3……,總有一個文具盒里至少會有幾枝鉛筆?
。ǔ鍪荆喊5本書放進2個抽屜里,總有一個抽屜里至少會有幾本書呢?)
生獨立思考,在小組內(nèi)交流,匯報。
師:許多同學都沒有再擺學具,用的什么方法?
生:平均分。把5本書平均分到2個抽屜里,每個抽屜里放2本書,還剩一本書,無論放在哪個抽屜里,總有一個抽屜里至少有3本書。生:5÷2=2……12+1=3
。ǔ鍪荆5本書放進3個抽屜呢?8本書放進5個抽屜呢?)
5÷3=1……21+1=28÷5=1……31+3=4
師:至少數(shù)為什么不是“商+余數(shù)”?(小組討論,匯報)
4、對比觀察算式,你能發(fā)現(xiàn)求至少數(shù)的'規(guī)律嗎?
物體數(shù)÷抽屜數(shù)=商……余數(shù)至少數(shù)=商+1
5、總結(jié)抽屜原理,運用抽屜原理的關(guān)鍵是什么?(找準物體數(shù)和抽屜數(shù)),閱讀相關(guān)資料。
a÷n=b……c(c≠0)把a個物體放進n個抽屜里,總有一個抽屜里至少放進(b+1)個物體。
三、應(yīng)用原理。
1、請你試一試。(口答,指出什么是物體數(shù),什么是抽屜數(shù))
。1)6只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一鴿舍,為什么?
。2)把13只小兔關(guān)在5個籠中,至少有幾只兔子要關(guān)在同一個籠里?
。3)有5袋餅干,每袋10快,發(fā)給6個小朋友,總有一個小朋友至少分到幾塊餅干?
2、下面的說法對嗎?說說你的理由。
向東小學6年級共有370名學生,其中六(2)班有49名學生。
A、六年級里至少有2名學生的生日是同一天。
。370個物體,366個抽屜)
B、六(2)班只有5名學生的生日在同一月。
(49個物體,12個抽屜,“只有”就是一定)
C、六(2)至少有25位學生是同一性別。
3、玩“猜?lián)淇恕钡挠螒颉?/p>
抽掉大小王,抽出5張牌,至少幾張是同花色?5÷4=1……11+1=2
抽15張至少有幾張數(shù)字相同?15÷13=1……21+1=2
4、學生把學生生活中能用抽屜原理解釋的現(xiàn)象寫下來。
留心觀察+細心思考=偉大發(fā)現(xiàn)
四、全課總結(jié)。
抽屜原理教學設(shè)計5
一、說教材
1、教學內(nèi)容:我說課的內(nèi)容是人教版六年級數(shù)學下冊數(shù)學廣角《抽屜原理》第一課時,也就是教材70-71頁的例1和例2.
2、教材地位及作用及學情分析
本單元用直觀的方法,介紹了“抽屜原理”的兩種形式,并安排了很多具體問題和變式,幫助學生通過“說理”的方式來理解“抽屜原理”,有助于提高學生的邏輯思維能力,為以后學習較嚴密的數(shù)學證明做準備。
教材中,有三處孩子們不好理解的地方:1)“總有一個”、“至少”這兩個關(guān)鍵詞的解讀;2)為了達到“至少”而進行“平均分”的思路,3)把什么看做物體,把什么看做抽屜,這樣一個數(shù)學模型的建立。六年級的學生對于總結(jié)規(guī)律的方法接觸比較少,尤其對于“數(shù)學證明”。于是我安排通過例1的直觀操作教學,及例2的適當抽象建模,讓全體學生真實地經(jīng)歷“抽屜原理”的探究過程,把他們在學習中可能會遇到的幾個困難,弄懂、弄通,建立清晰的基本概念、思路、方法。
3、本節(jié)課的教學目標
根據(jù)《數(shù)學課程標準》和教材內(nèi)容,我確定本節(jié)課學習目標如下:
知識性目標:初步了解抽屜原理,會用抽屜原理解決簡單的實際問題。
能力性目標:經(jīng)歷抽屜原理的探究過程,通過實踐操作,發(fā)現(xiàn)、歸納、總結(jié)原理。
情感性目標:通過“抽屜原理”的靈活應(yīng)用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學的魅力。
4、教學重、難點的確定
教學重點:經(jīng)歷抽屜原理的探究過程,發(fā)現(xiàn)、總結(jié)并理解抽屜原理。
教學難點:理解抽屜原理中“至少”的含義,并會用抽屜原理解決實際問題。
二、說教法、學法
六年級學生既好動又內(nèi)斂,于是教法上本節(jié)課主要采用了設(shè)疑激趣法、講授法、實踐操作法。課堂始終以設(shè)疑及觀察思考討論貫穿于整個教學環(huán)節(jié)中,采用師生互動的教學模式進行啟發(fā)式教學。學法上主要采用了自主合作、探究交流的學習方式。體現(xiàn)數(shù)學知識的形成過程,感受數(shù)學學習的樂趣。
三、說教學過程:
一、游戲激趣,初步體驗。
師:同學們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準備了2把椅子,請3個同學上來,誰愿來?
1.游戲要求:你們3位同學圍著椅子走動,等音樂定下來后請你們3個都坐在椅子上,每個人必須都坐下。
2.師:老師不用看就知道總有一把椅子上至少坐著兩名同學,是這樣的嗎?如果不相信咱們再做一次,好不好?
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。設(shè)計意圖:第一次與學生接觸,在課前進行的游戲激趣,一使教師和學生進行自然的溝通交流;二激發(fā)學生的興趣,引起探究的愿望;三為今天的`探究埋下伏筆。
二、操作探究,發(fā)現(xiàn)規(guī)律。
1、提出問題:把4支鉛筆放進3個文具盒中,不管怎么放,總有一個文具盒至少放進 支鉛筆。讓學生猜測“至少會是”幾支?
2、驗證結(jié)論:不管學生猜測的結(jié)論是什么,都要求學生借助實物進行操作,來驗證結(jié)論。學生以小組為單位進行操作和交流時,教師深入了解學生操作情況,找出列舉所有情況的學生。
。1)先請列舉所有情況的學生進行匯報,一說明列舉的不同情況,二結(jié)合操作說明自己的結(jié)論。(教師根據(jù)學生的回答板書所有的情況)
學生匯報完后,教師再利用枚舉法的示意圖,指出每種情況中都有幾支鉛筆被放進了同一個文具盒。
設(shè)計意圖:抽屜原理對于學生來說,比較抽象,特別是“總有一個文具盒中至少放進2支鉛筆”這句話的理解。所以通過具體的操作,列舉所有的情況后,引導學生直接關(guān)注到每種分法中數(shù)量最多的文具盒,理解“總有一個文具盒”以及“至少2支”。讓學生初步經(jīng)歷“數(shù)學證明”的過程,訓練學生的邏輯思維能力。
(2)提出問題:不用一一列舉,想一想還有其它的方法來證明這個結(jié)論嗎?
學生匯報了自己的方法后,教師圍繞假設(shè)法,組織學生展開討論:為什么每個文具盒里都要放1支鉛筆呢?請相互之間討論一下。
在討論的基礎(chǔ)上,教師小結(jié):假如每個文具盒放入一支鉛筆,剩下的一支還要放進一個文具盒,無論放在哪個文具盒里,一定能找到一個文具里至少有2支鉛筆。只有平均分才能將鉛筆盡可能的分散,保證“至少”的情況。
設(shè)計意圖:鼓勵學生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎(chǔ)上,學生意識到了要考慮最少的情況,從而引出假設(shè)法滲透平均分的思想。
(3)初步觀察規(guī)律。
教師繼續(xù)提問:6支鉛筆放進5個文具盒里呢?你還用一一列舉所有的擺法嗎?7支鉛筆放進6個文具盒里呢?100支鉛筆放進99個文具盒呢?你發(fā)現(xiàn)了什么?
設(shè)計意圖:讓學生在這個連續(xù)的過程中初步感知方法的優(yōu)劣,發(fā)展了學生的類推能力,形成比較抽象的數(shù)學思維。
3、運用抽屜原理解決問題。
出示第70頁做一做,讓學生運用簡單的抽屜原理解決問題。在說理的過程中重點關(guān)注“余下的2只鴿子”如何分配?
設(shè)計意圖:從余數(shù)1到余數(shù)2,讓學生再次體會要保證“至少”必須盡量平均分,余下的數(shù)也要進行二次平均分。
4、發(fā)現(xiàn)規(guī)律,初步建模。
我們將鉛筆、鴿子看做物體,文具盒、鴿舍看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學生用自己的語言描述,只要大概意思正確即可)
小結(jié):只要物體數(shù)量比抽屜的數(shù)量多,總有一個抽屜至少放進2個物體。這就叫做抽屜原理,F(xiàn)在你能解釋為什么老師肯定前兩排的同學中至少有2人的生日是同一個月份嗎?
設(shè)計意圖:通過對不同具體情況的判斷,初步建立“物體”“抽屜”的模型,發(fā)現(xiàn)簡單的抽屜原理。研究的問題來源于生活,還要還原到生活中去,所以請學生對課前的游戲的解釋,也是一個建模的過程,讓學生體會“抽屜”不一定是看得見,摸得著。
5、用有余數(shù)的除法算式表示假設(shè)法的思維過程。
(1)教學例2,可以出示問題后,讓學生說理,然后問:這個思考過程可以用算式表示出來嗎?
。2)做一做:8只鴿子飛回3個鴿舍,至少有3支鴿子飛進同一個鴿舍。為什么?
設(shè)計意圖:在例1和做一做的基礎(chǔ)上,相信學生會用平均分的方法解決“至少”的問題,將證明過程用有余數(shù)的除法算式表示,為下一步,學生發(fā)現(xiàn)結(jié)論與商和余數(shù)的關(guān)系做好鋪墊。
三、鞏固練習。
撲克牌游戲
、賻熍c生配合做
教師洗牌學生抽其中的任意5張,教師猜其中至少有2張是同花色的。
、趯W生做游戲
要求探尋規(guī)律并說明理由。
設(shè)計意圖:用游戲的形式激發(fā)學生的興趣,用抽屜原理解決具體問題進行建模,讓學生體會抽屜的形式是多種多樣的。
四、小結(jié)全課,激發(fā)熱情
1、今天的你有什么收獲?
我們將鉛筆、鴿子、撲克看做物體數(shù),文具盒、鴿舍、四種花色看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學生用自己的語言描述,只要大概意思正確即可)
小結(jié):只要物體數(shù)量比抽屜的數(shù)量多,總有一個抽屜至少放進2個物體。這就叫做抽屜原理。
2、介紹課外知識。
介紹抽屜原理的發(fā)現(xiàn)者——數(shù)學家狄里克雷。
設(shè)計意圖:讓學生體會平常事中也有數(shù)學原理,有探究的成就感,激發(fā)對數(shù)學的熱情。
【抽屜原理教學設(shè)計】相關(guān)文章:
《抽屜原理》教學設(shè)計05-27
抽屜原理教學設(shè)計08-28
《抽屜原理》教學設(shè)計07-29
【熱】抽屜原理教學設(shè)計15篇07-24
《抽屜原理》教學反思11-09
抽屜原理的教學反思05-15
《抽屜原理》教學反思09-15