《方程》教學(xué)反思
作為一名到崗不久的老師,教學(xué)是我們的任務(wù)之一,通過教學(xué)反思可以有效提升自己的課堂經(jīng)驗,寫教學(xué)反思需要注意哪些格式呢?下面是小編整理的《方程》教學(xué)反思,歡迎閱讀與收藏。
《方程》教學(xué)反思1
《解方程》這部分內(nèi)容,是數(shù)與代數(shù)領(lǐng)域中的一個重要內(nèi)容,是“代數(shù)”教學(xué)的起始單元,對于滲透與發(fā)展學(xué)生的代數(shù)思想有著極其重要的作用。
在開課時,通過復(fù)習(xí)哪些是方程,鞏固方程的含義,為后面教學(xué)作鋪墊。
教學(xué)時,我讓學(xué)生自己說出推想過程,一邊板書,一邊指出解題的想法,然后著重講解檢驗的方法及書寫格式,并在后面的鞏固練習(xí)當(dāng)中加入口答檢驗,根據(jù)課本上的`“注意”強(qiáng)調(diào)說明雖然不要求每題都寫出檢驗,但都要口算進(jìn)行檢驗,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
在出示概念時,先讓學(xué)生自學(xué)了概念。自學(xué)完概念后,應(yīng)讓學(xué)生對兩概念講講自己的理解,自己勾畫出重點字,然后才是教師對概念重點的強(qiáng)調(diào),這樣更能區(qū)分兩概念不同的含義,對難點的突破也是一個很好的方法,可以讓學(xué)生將易混易錯的地方,清楚理解后,明確兩概念的區(qū)別,這點在課上忽略了。
在后面的反饋練習(xí)時,因前面例題的格式講的還不夠明確,所以練習(xí)時有點反復(fù),但在后面的練習(xí)中學(xué)生已完全掌握。鞏固練習(xí)的層次很好,由易到難,對學(xué)生的學(xué)習(xí)有突破,學(xué)生完成的正確率也很高。
這節(jié)課整體來說我比較滿意,對于細(xì)節(jié)上的處理。在今后的教學(xué)中我會更加注意,使教學(xué)更加嚴(yán)謹(jǐn),也會更注意教材的研讀,爭取上一節(jié)完美的好課。
《方程》教學(xué)反思2
本課所體現(xiàn)的教育理念是要讓學(xué)生在廣泛的探究時空中,在民主平等、輕松愉悅的氛圍里,應(yīng)用已有知識經(jīng)驗,通過觀察比較、質(zhì)疑問難、釋疑解惑、合作交流,理解并掌握方程的意義,知道等式和方程之間的關(guān)系,并能進(jìn)行辨析。使學(xué)生學(xué)會用方程表示具體甚或情境中的等量關(guān)系,進(jìn)一步感受數(shù)學(xué)與生活之間的密切聯(lián)系。同時提高學(xué)生的觀察能力、分析能力和解決實際問題的能力。初步建立分類的思想。
這節(jié)課改變了傳統(tǒng)的教法,從天平的平衡與不平衡引出等式,通過教師的引導(dǎo),讓學(xué)生去動腦筋思考,展示了學(xué)習(xí)的過程。學(xué)習(xí)的整個過程符合兒童認(rèn)知發(fā)展的一般規(guī)律。從生活實際引進(jìn)學(xué)生已有生活的經(jīng)驗,很自然地想到兩種不同情況,并用式子表示,引出等式;其中有含有未知數(shù)、不含未知數(shù)的兩種形式。體現(xiàn)“生活中有數(shù)學(xué),數(shù)學(xué)可以展現(xiàn)生活”這一大眾數(shù)學(xué)觀,也體現(xiàn)了科學(xué)的本質(zhì)是“來源于生活,運用于生活”。通過觀察,探尋式子特點,再把這些式子進(jìn)行兩次分類,在分類中得出方程的意義,也看出了構(gòu)成方程的兩個條件,反映了認(rèn)識事物從具體到抽象的一般過程。其中的觀察、比較、分類,也是人類學(xué)習(xí)的'基本手段、方法。
信任學(xué)生,充分發(fā)揮主體積極性。在教學(xué)過程中,放手讓學(xué)生把各自的想法用式子表示出來,展示學(xué)生的學(xué)習(xí)成果;學(xué)習(xí)小組互相交流、檢查,體現(xiàn)了學(xué)習(xí)的自主性;學(xué)習(xí)的過程、結(jié)果也由學(xué)生自己來體驗、評價,大大激發(fā)了學(xué)生學(xué)習(xí)的積極性。
創(chuàng)新是永恒的,數(shù)學(xué)教學(xué)需要不斷的革新,這樣的課堂教學(xué)體現(xiàn)了當(dāng)前小學(xué)數(shù)學(xué)課程改革和課堂教學(xué)改革的精神,注重從學(xué)生的生活實際出發(fā)引導(dǎo)學(xué)生大量收集反映現(xiàn)實生活的“式子”,初步建立式子的觀念;再組織學(xué)生對這些式子進(jìn)行比較、分類,逐步了解等式的意義;最后在對等式的去粗取精,對選定的素材通過觀察、比較,明確方程的所有本質(zhì)屬性。本課注重了概念教學(xué)的一般要求,對方程這一概念的本質(zhì)屬性的探索全部由學(xué)生主動進(jìn)行,注重呈現(xiàn)形式,從細(xì)微之處顯示出教學(xué)的風(fēng)格。
《方程》教學(xué)反思3
《拋物線及其標(biāo)準(zhǔn)方程》是人教版高中數(shù)學(xué)(選修2—1)中的內(nèi)容,適用對象是高二年級理科的學(xué)生。學(xué)生在初中階段所學(xué)的二次函數(shù)中,已經(jīng)初步接觸過拋物線。通過本節(jié)課的學(xué)習(xí),可以讓學(xué)生進(jìn)一步了解拋物線所形成的幾何本質(zhì)。在研究橢圓和雙曲線的基礎(chǔ)上,通過類比來研究拋物線的定義和標(biāo)準(zhǔn)方程,讓學(xué)生進(jìn)一步掌握研究曲的基本方法,并為他們今后學(xué)習(xí)解析幾何奠定良好的基礎(chǔ)。
本課在新課標(biāo)思想的指導(dǎo)下,結(jié)合前后的知識內(nèi)容及學(xué)生的特點和認(rèn)知規(guī)律,創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)興趣,教師現(xiàn)場用幾何畫板進(jìn)行演示,讓學(xué)生對拋物線由感性認(rèn)識開始,歸納出拋物線的定義,逐步上升到理性認(rèn)識,并根據(jù)定義推導(dǎo)拋物線的標(biāo)準(zhǔn)方程。在課堂教學(xué)中,充分發(fā)揮多媒體的資源優(yōu)勢,利用計算機(jī)作為輔助手段,動態(tài)演示拋物線的圖像,激發(fā)學(xué)生學(xué)習(xí)興趣,有效地協(xié)助完成了師生探究活動。充分將信息技術(shù)和學(xué)科教學(xué)有機(jī)地整合起來,有利于突出重點、突破難點,有利于教學(xué)目標(biāo)的實現(xiàn),使學(xué)生對所學(xué)知識得以深化。充分體現(xiàn)學(xué)生的主體地位,讓學(xué)生成為學(xué)習(xí)的主人。
在教學(xué)中結(jié)合新課標(biāo)的思想,從三個維度出發(fā),制定如下的教學(xué)目標(biāo):由實例感知,得出拋物線的.定義,并推導(dǎo)出其標(biāo)準(zhǔn)方程,在實際應(yīng)用中進(jìn)一步體會數(shù)形結(jié)合的思想。 使學(xué)生了解拋物線的定義、幾何圖形和標(biāo)準(zhǔn)方程;知道它們的簡單幾何性質(zhì);使用拋物線的定義求拋物線的標(biāo)準(zhǔn)方程,焦點坐標(biāo),準(zhǔn)線方程。
同時能使學(xué)生初步根據(jù)拋物線的特征選擇不同的解決問題的方法。體會拋物線在生活中的應(yīng)用,學(xué)會在生活中用數(shù)學(xué)的方法去解釋生活中的問題。了解拋物線的實際背景,感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。通過設(shè)置豐富的問題情境,鼓勵從多角度思考、探索、交流,激發(fā)學(xué)生的好奇心和主動學(xué)習(xí)的欲望;通過拋物線的定義及其標(biāo)準(zhǔn)方程的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合的思想, 養(yǎng)成利用數(shù)形結(jié)合解決問題的習(xí)慣。
不足之處:課堂容量稍顯大些,給學(xué)生自己思考的時間空間不夠。
《方程》教學(xué)反思4
本節(jié)課是等式與方程的第一課時,就單單等式和方程的概念,學(xué)生很容易理解,本節(jié)課需要克服的難點是讓學(xué)生充分理解方程和等式的關(guān)系,從而理解方程的意義。這是一個由淺及深的過程,首先,學(xué)生先接觸方程的概念,從概念中發(fā)現(xiàn)方程是等式,再通過比較發(fā)現(xiàn)所有的方程都是等式,但有些等式卻不是方程。再通過集合圖的形式讓學(xué)生真正發(fā)現(xiàn)方程和等式的關(guān)系。
這時回過去細(xì)細(xì)品味方程的含義:含有未知數(shù)的等式叫方程。應(yīng)該可以對方程有更深刻的理解:等式里可以都是數(shù)字,也可以有字母,那不管是有字母(未知數(shù))還是只有數(shù)字,這些都是等式;但在這其中,只有含有字母(未知數(shù))的等式才叫作方程。我們平時教學(xué),為了簡單易懂,往往會讓學(xué)生記簡單的方法,比如看有等號的就是等式,有等號又有字母的就是方程。這是將方程和等式關(guān)系的割裂,不利于學(xué)生形成知識的聯(lián)系。要想構(gòu)建方程的含義就必須從等式來看,由此反看本課的教學(xué)設(shè)計,如何體現(xiàn)等式到方程這樣一個知識變化的過程用幾張靜態(tài)的`圖片是不行的。
它割裂了事物的變化過程,因此我覺得采用實物的天平來變化地演示,可以讓學(xué)生將等式更合理地遷移到方程,仔細(xì)觀察,其實課本也是這樣子地安排,只是限于表現(xiàn)形式,讓老師誤以為是幾張圖片。第二張圖片是將第一張圖片中地雞蛋換成木塊(未知數(shù)),第三張圖片是將第二張圖片右邊加上50g,第四張圖片是將右邊再加上50g,最后一張圖片是將左側(cè)地50g換成木塊(未知數(shù))。在通過例1認(rèn)識了等式以后很快我們便能找到這些含有字母地等式,從而明確:等式中可以都是數(shù)字也可以有數(shù)字和字母(未知數(shù))。
接著,自然而然地介紹:但含有未知數(shù)的這些等式又有個特殊地名字——方程。這個時候方程的含義就呼之欲出了。通過這樣子的教學(xué),我覺得知識是生長的,有聯(lián)系的;而不是割裂和碎片化的。
《方程》教學(xué)反思5
1、教材的編排上難度下降。有意避開了,形如:7.8—X=2.6,12÷X=1.2等類型的題目。把用等式解決的方法單一化了,這和提倡算法多樣化又有了矛盾。盡管老師一再強(qiáng)調(diào)用等式的性質(zhì)解,還是有多數(shù)學(xué)生用原來的方法解答。
2、強(qiáng)調(diào)書寫格式得有層次。告訴學(xué)生利用等式的性質(zhì)來解方程熟練以后特別快。同時強(qiáng)調(diào)書寫格式。通過教學(xué),學(xué)生利用等式的性質(zhì)學(xué)生能解決簡單的`方程,如果有過程,方程中的等號不易上下對齊,這點問題不大。到熟練之后省去過程時再強(qiáng)調(diào)格式。
。、內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,()可以實際上反而是多了。教師要給他們補(bǔ)充X在后面的方程的解法。要教他們列方程時怎么避免X在后面這樣方程的出現(xiàn)等等。
在實際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,用這樣的方法來解方程之后,書本中不再出現(xiàn)X做減數(shù),除數(shù)的方程題了,但學(xué)生在列方程解實際應(yīng)用時,學(xué)生列出的方程中還有這樣的題目,但不會解答,這時我們又要強(qiáng)調(diào)算法多樣化,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。有的學(xué)生又不得不用除、減法各部分間的關(guān)系做題。在實際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。因此教學(xué)中我還是對學(xué)生說盡量用方程的性質(zhì)解,若遇到用等式的性質(zhì)解決不了時,可以用以前學(xué)過的知識解答。認(rèn)識方程教學(xué)反思解方程教學(xué)反思方程教學(xué)反思
《方程》教學(xué)反思6
在本章節(jié)中,學(xué)生將在平面直角坐標(biāo)系中建立直線的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)。 用代數(shù)方法研究幾何思路清晰,可以充分運用各種公式解題,解題方法自然。但是,代數(shù)方法一個致命的弱點就是“運算量大,解題過程繁瑣,結(jié)果容易出錯”等等,無疑也影響了解題的質(zhì)量及效率。新課程理念強(qiáng)調(diào):公式教學(xué),不僅要重視公式的應(yīng)用,教師更要充分展示公式的背景,與學(xué)生一道經(jīng)歷公式的形成過程,同時在應(yīng)用中鞏固公式。在推導(dǎo)公式的過程中,要讓學(xué)生充分體驗推導(dǎo)中所體現(xiàn)的數(shù)學(xué)思想、方法,從中學(xué)會學(xué)習(xí),樂于學(xué)習(xí)。
教學(xué)過程中學(xué)生對函數(shù)圖像及其解析式和曲線及方程之間的聯(lián)系與區(qū)別,概念上還是比較模糊的。初中講直線,是將其視為一次函數(shù),它的解析式是y = kx + b,圖像是一條直線;高中講直線,是將其視為一條平面曲線(更確切地講是點的軌跡),它的.方程是二元一次方程,而y = kx + b只是直線方程的一種形式。作為函數(shù)解析式的y = kx + b,x是自變量,y是因變量,只有當(dāng)自變量x的值取定,因變量y的值才能確定,它們的地位是“不平等”的。而作為直線方程的y = kx + b,x和y是直線上動點的橫坐標(biāo)和縱坐標(biāo),它們的地位是平等的。函數(shù)的解析式一定可以轉(zhuǎn)化為曲線的方程,但曲線的方程卻不一定能夠轉(zhuǎn)化為函數(shù)的解析式。
對直線的方程的教學(xué)應(yīng)該強(qiáng)調(diào),直線的方程有5種形式,要用哪種形式是與已知條件相關(guān)的。并且在教學(xué)中一定要強(qiáng)調(diào)每種形式的適用范圍,以防漏解。
直線的斜率也是學(xué)生容易忽略的地方,解題時容易不對斜率討論而求解,漏掉斜率不存在的情況,在教學(xué)中要反復(fù)強(qiáng)調(diào)的。
借助直線的方程來研究直線的位置關(guān)系也是學(xué)生第一次接觸,數(shù)與形的結(jié)合,方程與圖像的結(jié)合,是解析幾何的基本研究方法,教學(xué)中應(yīng)反復(fù)強(qiáng)調(diào)方程中的哪些量與圖像中的哪些性質(zhì)相吻合,學(xué)生可以在數(shù)與形之間靈活的轉(zhuǎn)化,那么解析幾何學(xué)起來就輕松多了。
《方程》教學(xué)反思7
在教現(xiàn)行人教版九年制義務(wù)教育小學(xué)數(shù)學(xué)第九冊《簡易方程》時,發(fā)現(xiàn)現(xiàn)行教材與以往版本不同:
以往的教法是利用“兩個加數(shù)相加,求一個加數(shù)就用和減去另一個加數(shù),即:加數(shù)=和-加數(shù);兩個因數(shù)相乘,求一個因數(shù)就用積除以另一個因數(shù),即:因數(shù)=積÷因數(shù)”;
現(xiàn)行的教法和初中類似,即:解方程時利用方程兩邊同時加上或減去一個數(shù)或同時乘以或除以一個不為零的`數(shù)方程兩邊的值不變,但具體解題中與初中不同的是不提移項與合并同類項,思想方法卻是相同的。
在教學(xué)中發(fā)現(xiàn)小學(xué)生對這種方法掌握較困難,主要表現(xiàn)在:
第一,用字母表示數(shù)不好接受,不易理解,也不習(xí)慣;
第二,用代數(shù)式表示一個得數(shù)或結(jié)果不理解;
第三,字母與數(shù),字母與字母之間的簡單運算不理解,例如:a2=a×a,2a=a+a,用x-5表示一個數(shù)。
我們知道算式思維與方程思維是兩種不同的思考方法,在一些復(fù)雜的問題中用算式很難解出,用方程卻簡單的多,現(xiàn)行小學(xué)教材中有提升方程教學(xué)的意思,旨在培養(yǎng)學(xué)生的思考能力,便于與初中銜接。
教學(xué)實踐中我們發(fā)現(xiàn)通過練習(xí)學(xué)生還是可以掌握的很好的。
《方程》教學(xué)反思8
這一大節(jié)的內(nèi)容有兩點:一是字母表示數(shù);二是列方程解決問題。目標(biāo)有三點:一是經(jīng)歷回顧和整理式與方程的有關(guān)知識的過程;二是會用方程解決問題;三是感受式與方程在解決問題中的價值,培養(yǎng)初步的代數(shù)思想。為了調(diào)動學(xué)生的積極性,避免教學(xué)中學(xué)生的厭倦情緒,這節(jié)課的每一個環(huán)節(jié)都進(jìn)行了精心的設(shè)計。
在復(fù)習(xí)“用字母表示數(shù)”中,教師結(jié)合具體問題,給學(xué)生提供從事數(shù)學(xué)活動的機(jī)會,讓學(xué)生在自主探究和合作交流的過程中理解和掌握基本的知識,從而進(jìn)一步對這些知識進(jìn)行查漏補(bǔ)缺。從課堂情況來看,學(xué)生的'參與性廣,積極性高,而且對這部分內(nèi)容掌握不錯。
本節(jié)課中,教師把重點放在“方程”上,在復(fù)習(xí)方程的意義、等式的性質(zhì)和解方程后,接著出示案例題,引導(dǎo)學(xué)生讀題,弄清題意,讓學(xué)生自主參與列方程解題的過程,提高學(xué)生應(yīng)用代數(shù)的初步知識解決問題的能力,培養(yǎng)了學(xué)生的初步符號感。
問題是數(shù)學(xué)的心臟”,好的問題能促使學(xué)生積極思考。本節(jié)課教師設(shè)計的問題較多,但每一個問題都包含許多知識。如:說一說,你是怎樣解方程的?解方程時應(yīng)用的是什么知識?這樣把學(xué)生帶入了積極思考的境地。
《方程》教學(xué)反思9
方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,利用順向思維,降低思考的難度。
五年級數(shù)學(xué)上冊第四單元的教學(xué)內(nèi)容是“簡易方程”。為了更好地實現(xiàn)小學(xué)與初中知識的接軌,新教材對簡易方程的解法進(jìn)行了一次改革,將舊教材利用加減乘除法各部分之間關(guān)系解方程,改為讓學(xué)生根據(jù)天平的原理來學(xué)習(xí)方程解法,也就是利用等式的基本性質(zhì)來解方程。舉個例子:
舊教材:
x+48=127
x=127-48
依據(jù)運算之間的關(guān)系:一個加數(shù)等于和減另一個加數(shù)。
新教材:
x+48=127
x+48-48=127-48
依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。
在實際教學(xué)中發(fā)現(xiàn),同舊教材的方法相比,現(xiàn)行教材中的這種解法,學(xué)生更容易接受,他們不必再去記“一個加數(shù)=和-另一個加數(shù)、被減數(shù)=減數(shù)+差……”這些關(guān)系式了,只需根據(jù)等式的基本性質(zhì),想辦法讓方程左邊只剩下X就行。學(xué)生很快就將這種解法運用自如,毫不費力。
可是,當(dāng)學(xué)到用方程解決實際問題時,卻出現(xiàn)了狀況。
新教材在改革方程解法的同時,有一個相應(yīng)的調(diào)整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因為利用等式的.基本性質(zhì)解a-x=b、a÷x=b,方程變形的過程及算理解釋比較麻煩。然而,在列方程解決實際問題時,卻不可避免地會出現(xiàn)以上兩種類型的方程。如:“一本書有65頁,王紅看了一部分后,還剩27頁。王紅已經(jīng)看了多少頁?”學(xué)生很自然就列出65—x=27這樣的方程。
如何解決這個難題?細(xì)讀教參,發(fā)現(xiàn)編者的思路是,當(dāng)需要列出形如a-x=b或a÷x=b的方程時,要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,改列成形如x+b=a或bx=a的方程。這樣的處理方法倒是可以繼續(xù)回避上述的兩種特殊方程,可是,新的矛盾又出現(xiàn)了。
我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,利用順向思維,降低思考的難度。這是方程方法的優(yōu)越性。然而,在刻意回避a-x=b或a÷x=b這樣的方程時,往往會出現(xiàn)和方程思想的基本理念相違背的現(xiàn)象。
如“6枝鋼筆比4枝鉛筆貴12元。鋼筆每枝3元,鉛筆每枝多少元?”
合理的做法應(yīng)是“設(shè)鉛筆每枝X元”,從順向思考,列出方程為“6×3-4X=12”。然而,按新教材的編排,學(xué)生無法解這樣的方程,只能轉(zhuǎn)列成“4X+12=6×3”。再如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷X=8,等到解方程時才發(fā)現(xiàn)利用天平的原理沒法繼續(xù),只好改列成8X=128。
如此一來,學(xué)生怎么能充分體會方程順向思維的優(yōu)越性?
如果說用舊教材的思路解方程對初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,如何是好?
我只能把新舊教材兩種方法進(jìn)行互補(bǔ),告訴學(xué)生,遇到這類方程時,一種解決的辦法是按減法和除法各部分之間的關(guān)系進(jìn)行解答;另一種方法就是先按等式的性質(zhì),把方程的左右邊都加或乘一個x,然后把方程的左右兩邊交換一下位置,再按照a-x=b及a÷x=b的方法進(jìn)行解答。
《方程》教學(xué)反思10
本節(jié)課的重點是探究分式方程的解法,我首先舉一道一元一次方程復(fù)習(xí)其解法,然后通過解一道分式方程,啟發(fā)引導(dǎo)學(xué)生參照一元一次方程的解法,由學(xué)生自己探索、歸納分式方程的解法,分式方程教學(xué)反思。學(xué)生不是停留在會課本知識層面,而是站在研究者的角度深入其境,使學(xué)生的思維得到發(fā)揮。
在教學(xué)設(shè)計上,以探究任務(wù)啟發(fā)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供了學(xué)生自主探究的舞臺,營造了鍛練思維的空間,在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生探究、歸納的能力。在課堂教學(xué)中,我時時注意營造思維氛圍,讓學(xué)生在探究中學(xué)會思考、表達(dá)。
在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個方面入手:
1. 分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的'兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進(jìn)行檢驗。
2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
3. 解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母
4.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
在教學(xué)方法上,我采用類比滲透思想方法進(jìn)行教學(xué),通過與一元一次方程解法相比較,啟發(fā)引導(dǎo)學(xué)生自主探究、歸納分式方程的解法。運用類比教學(xué)法具有以下三方面的優(yōu)點:
1.通過復(fù)習(xí)一元一次方程的解法,學(xué)生在探究、歸納分式方程解法的同時進(jìn)行類比,讓學(xué)生在解分式方程時有法可循,而不會覺得無從下手。
2.把分式方程的解法與一元一次方程的解法進(jìn)行相比較,讓學(xué)生既可以溫習(xí)舊知識,又可以加深對新知識的記憶。
3.通過對一元一次方程和分式方程解法的類比,更能突顯分式方程解法中驗根的重要性。
《方程》教學(xué)反思11
任何概念的學(xué)習(xí),如有可能,我們當(dāng)然希望學(xué)生在問題情境中,在解決問題的過程中,成為催生新知的主力軍.限于橢圓概念的特殊性,我對問題情境的創(chuàng)設(shè),通過兩個角度:從形的角度和數(shù)的角度來加以引入,實現(xiàn)了由學(xué)生催生新知的初衷.
橢圓的定義教學(xué)中,畫出橢圓軌跡,完全是意外的驚喜,采用根據(jù)定義“先畫后展”的處理方式,突顯了知識主題,符合學(xué)生認(rèn)知規(guī)律,推動了課堂發(fā)展,進(jìn)而通過類比圓的標(biāo)準(zhǔn)方程的推導(dǎo),給出橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)步驟。橢圓方程的化簡,對于學(xué)生而言是困難的,但不管怎么困難,教師也不可越俎代庖.為了突破這個難點,我們在曲線與方程的教學(xué)過程中,引導(dǎo)學(xué)生小組合作進(jìn)行化簡,并進(jìn)行了實際操作.在課堂上,督促學(xué)生運用既有策略進(jìn)行獨立的推導(dǎo)化簡,通過巡視,指導(dǎo)仍有困難者,訓(xùn)練學(xué)生的代數(shù)運算能力.此處的訓(xùn)練對于增強(qiáng)學(xué)生的自信和毅力有著重要的'意義.
類比學(xué)習(xí)方法是本節(jié)課的主線,而數(shù)形結(jié)合又是本節(jié)課的主調(diào),解析法則是本節(jié)課的主要原理方法。
另外,以后的教學(xué)中,應(yīng)該更多的加強(qiáng)學(xué)生合作探究的能力,減少教師的講解,從而能為學(xué)生提供更多的合作機(jī)會。
《方程》教學(xué)反思12
本節(jié)借助幾何畫板的演示功能,使學(xué)生通過點的運動,觀察到橢圓的軌跡的特征。多媒體創(chuàng)設(shè)問題的情境,讓探究式教學(xué)走進(jìn)課堂,喚醒學(xué)生的主體意識,發(fā)展學(xué)生的主體能力,讓學(xué)生在參與中學(xué)會學(xué)習(xí)、學(xué)會合作、學(xué)會創(chuàng)新。
學(xué)生雖然對橢圓圖形有所了解,但只限于感性認(rèn)識,缺少理性的'思考、探索和創(chuàng)新,這與缺乏必要的數(shù)學(xué)思想和方法密切相關(guān)。本節(jié)課從實例出發(fā),用多媒體結(jié)合本課題設(shè)計了一對動點有規(guī)律的運動作一些理性的探索和研究。
在教材處理上,大膽創(chuàng)新,根據(jù)橢圓定義的特點,結(jié)合學(xué)生的認(rèn)識能力和思維習(xí)慣在概念的理解上,先突出“和”,在此基礎(chǔ)上再完善“常數(shù)”取值范圍。在標(biāo)準(zhǔn)方程的推導(dǎo)上,并不是直接給出教材中的“建系”方式,而是讓學(xué)生自主地“建系”,通過所得方程的比較,得到標(biāo)準(zhǔn)方程,從中去體會探索的樂趣和數(shù)學(xué)中的對稱美和簡潔美。
在對教材中“令”的處理并不是生硬地過渡,而是通過課件讓學(xué)生觀察在當(dāng)為橢圓短軸端點時(但這一幾何性質(zhì)并不向?qū)W生交待),特征三角形所體現(xiàn)出來的幾何關(guān)系,再做變換。
《方程》教學(xué)反思13
《等式與方程》教學(xué)反思 這是開學(xué)第一天,我給孩子們上的新課內(nèi)容。課堂氣氛很活躍,孩子們回答問題也很積極。本節(jié)課的重點是方程的概念以及等式與方程的關(guān)系。 "含有未知數(shù)的等式是方程",這句話中包括兩個條件,一個是"含有求知數(shù)",一個是"等式"。因此,"含有未知數(shù)"與"等式"是方程意義的兩個重要的內(nèi)涵。 在上課之前,我本來是想帶天平演示以加深孩子們對等式的理解和掌握,后來 為了課堂實行方便有效,我只帶了掛圖,孩子們也學(xué)的`很積極。在這主要是讓學(xué)生學(xué)會判斷哪些是方程,哪些不是方程。 斷定一個式子是不是方程,要從兩個條件入手,一是"含有求知數(shù)"二是"等式",兩個條件缺一不可。從而學(xué)生互相問,這個為什么不是,哪個為什么不是。含有求知數(shù):5Y不是方程,因為不是等式。5+8=13不是方程,因為沒有求知數(shù)。所以方程既要是等式又要含有求知數(shù)。 X+Y=Z也是方程,因為含有求知數(shù),并且是等式。Y=5也是方程,因為含有求知數(shù),并且是等式。 通過本節(jié)課的學(xué)習(xí),孩子們基本上可以判斷哪些是方程,哪些是等式,也分清了等式和方程之間的關(guān)系。
《方程》教學(xué)反思14
課堂從表演天平開始,姬亞航表演的天平讓學(xué)生哄堂大笑。馬明俊的天平表演的兢兢業(yè)業(yè),認(rèn)認(rèn)真真。六個式子,在輕松中從他們的身上寫到了黑板上,接下來就是這節(jié)課的關(guān)鍵地方了。問:如果讓你把這幾個式子進(jìn)行分類,你會怎么分?孩子們在默默的寫著自己的思考,我在教室里巡回的看著他們的精彩。有按是否有字母分成兩類的,有按照是否是等式的分成兩類的,有這兩類都寫,但徘徊的.,(在他們心中,可能只是有一種分類是正確的)還有些別出心裁的把自己分類后的式子用長方形或圓形圈起來的,這不就是韋恩圖的雛形嗎?在五個學(xué)生展示完自己的分類作品之后,我明確了按照是否是等式的分類方法,對另外一種分類也進(jìn)行了肯定。再問:如果讓你把這幾個等式再分類的話,你會怎么分?這里已經(jīng)不需要在思考了,按照是否有字母的標(biāo)準(zhǔn)就水到渠成了,什么是方程也就自然的在學(xué)生心目中有了答案:含有字母(未知數(shù))的等式。像學(xué)生的這些想法我能在課前預(yù)設(shè)嗎?答案是否定的,我只能根據(jù)課堂的進(jìn)程隨時調(diào)控,而在一節(jié)10分鐘的微課上,我是講不出這些東西的。課堂最后一個環(huán)節(jié),在以前就見過方程和從題目中找天平中繼續(xù)著,特別是從題目中找天平,我覺得是非常好的一種方式,題目中的天平,不就是我們一直所說的等量關(guān)系嗎?而找等量關(guān)系又是許多孩子的難點,在方程的第一節(jié)課就給他們這樣的印象,用比找等量關(guān)系更可愛的找天平讓他們?nèi)ニ伎,對于他們以后用方程解題無疑開了一個好頭。如果說之前的認(rèn)識方程是在輕松中認(rèn)識的話,那么找題目中的天平則是在愉快中升華。方程是一種模型,建模的思想不就是找天平的一個過程嗎?遺憾的一點是沒有在這個環(huán)節(jié)層層遞進(jìn),這也是自己課前準(zhǔn)備不充分的體現(xiàn),因為找天平的靈感也是在課堂上萌發(fā)的。
反思一點:
課本上的情景寫式子環(huán)節(jié),6到7個式子已經(jīng)足夠了,多了浪費時間,并且會剝奪學(xué)生認(rèn)識方程這個主線。再次體會了教材的安排是有道理的。
反思二點:
如果非要給這節(jié)課打分,我自己打85分,更客觀。不過,多少分都無所謂,76分也沒有對自己造成太大的影響,不過就是耿耿于懷一段時間。100分也不能說明什么問題,明知這樣的數(shù)據(jù)有水份,雖然有些學(xué)生也寫了原因:您講課幽默,我們愿意聽。上好自己的課才是關(guān)鍵,讓學(xué)生在自己的課堂上得到最大的受益才是目的。
反思三點:
一節(jié)課沒有講過是沒有發(fā)言權(quán)的,講過了自己的思路也不一定正確。每個老師都有自己的想法,要善于學(xué)習(xí)別人的優(yōu)點。但不能照搬別人的流程。關(guān)鍵要看執(zhí)教者的立足點是什么,是為了學(xué)生,還是為了聽眾,是踏踏實實,還是嘩眾取寵。這些標(biāo)準(zhǔn)才是判斷課的好壞的標(biāo)準(zhǔn)。
《方程》教學(xué)反思15
首先因為學(xué)生在開始已經(jīng)學(xué)習(xí)了用直接開平方法和因式分解法解一元二次方程,因此通過大屏幕展示學(xué)生比較感興趣的籬笆問題引入,從而引出本節(jié)課的內(nèi)容,在學(xué)生掌握的過程中,選取不同類型的方程讓學(xué)生用配方法解,以達(dá)到鞏固的目的,最后為了進(jìn)一步拓展提升,出現(xiàn)了二次項系數(shù)不是一的方程,讓學(xué)生學(xué)會用類比的方法解決問題 。
我認(rèn)為本節(jié)課自己在實施學(xué)生主體參與方面做到比較成功:
1. 鞏固舊知對學(xué)生來說是非常重要的,尤其是初三年級的學(xué)生大部分已經(jīng)有了厭學(xué)的情緒,或是怕自己跟不上,產(chǎn)生消極的心里,通過復(fù)習(xí)舊知,可喚起他們學(xué)習(xí)的積極性,大面積提高課堂效率。
2. 從生活實例中引入新課,是數(shù)學(xué)課程標(biāo)準(zhǔn)的要求,學(xué)生們學(xué)習(xí)數(shù)學(xué)的目的就是為了應(yīng)用數(shù)學(xué)知識解決實際問題,對他們感興趣的話題他們就會愈學(xué)愈帶勁,這樣更能提高學(xué)困生的'學(xué)習(xí)積極性。
3. 初三數(shù)學(xué)又得體現(xiàn)分次優(yōu)化,因此,在本節(jié)課的重點教學(xué)時,我備課翻閱了近幾年的中考題,選擇了一些比較典型的習(xí)題讓同學(xué)們來做,并讓他們在小組內(nèi)充分的交流,以達(dá)到提高全體學(xué)生學(xué)習(xí)積極性的目的。.
教學(xué)中還有許多需要改進(jìn)的地方:
1. 本節(jié)課中有些能夠讓學(xué)生口答的地方應(yīng)節(jié)省出時間讓學(xué)生做大量的類型題,以提高優(yōu)生的能力。
2. 課堂小結(jié)的權(quán)利也應(yīng)交給學(xué)生來總結(jié),以提高學(xué)生的主體參與能力。
3. 題目的難易度沒有掌握好,根本上解決不了好學(xué)生吃不飽,跟隊生吃不了的問題。
4. 課堂容量不大,節(jié)奏比較緩慢。應(yīng)該是大容量,快節(jié)奏,高效率。
【《方程》教學(xué)反思】相關(guān)文章:
《方程》教學(xué)反思07-18
《解方程》教學(xué)反思07-29
等式與方程教學(xué)反思01-30
《式與方程》教學(xué)反思07-04
《解方程》教學(xué)反思05-02
《簡易方程》教學(xué)反思09-24
《方程意義》教學(xué)反思08-14
方程意義教學(xué)反思08-07
解方程的教學(xué)反思05-25
《方程的意義》教學(xué)反思05-17