思思热免费在线视频观看|欧美国产精品一级|精品亚洲一区二区|真实国产乱子伦对白视频

<b id="w545d"><legend id="w545d"></legend></b>
<blockquote id="w545d"></blockquote>
    1. <thead id="w545d"></thead>
        首頁 申請書推薦信邀請函通知工作總結工作計劃策劃書工作報告合同演講稿職業(yè)規(guī)劃
        當前位置:98158范文網(wǎng)>教育范文>教學反思>《解方程》教學反思

        《解方程》教學反思

        時間:2024-07-29 23:36:10 教學反思 我要投稿

        《解方程》教學反思

          作為一名優(yōu)秀的教師,教學是我們的工作之一,我們可以把教學過程中的感悟記錄在教學反思中,那么優(yōu)秀的教學反思是什么樣的呢?以下是小編收集整理的《解方程》教學反思 ,僅供參考,希望能夠幫助到大家。

        《解方程》教學反思

        《解方程》教學反思 1

          《解方程》是人教課標版小學數(shù)學五年級上冊第四單元內(nèi)容,本節(jié)課是在認識用字母表示數(shù)的基礎上進行教學的,新課程解方程教學與以往的最大不同就是,不是利用加減乘除各部分間的關系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。

          我對課時安排及教學設計均做了較大調(diào)整。原訂計劃是第一課時完成“方程的解”及“解方程”概念教學,要求學生掌握方程檢驗的書寫格式,第二課時完成加、減、乘、除各類型方程解法的教學。調(diào)整后的教案改為第一課時完成“方程的解”及“解方程”概念教學、會解形如X±A=B的方程,掌握檢驗的格式;第二課時只完成乘除法方程的解法。我上的是第一課時,其次對于教學設計也做了相應處理,將例1 改為:X+20=70,又將X-a=b形式的方程穿插學習過程之中。

          為什么我會做如此改動呢?基于以下兩點原因:

          1、考慮到學生一節(jié)課內(nèi)如要掌握加減乘除各種類型方程的解法、理解解方程的原理,規(guī)范書寫格式,內(nèi)容太多,怕影響教學效果。2、如果能將“解方程”與“方程的解”這兩個概念結合規(guī)范的解方程書寫過程和結果來向學生解釋,更利于學生理解掌握?傮w思路如下:

          1、從復習天平保持平衡的道理入手,引出課題,引導學習質(zhì)疑,有利于激發(fā)學生主動探究、深入學習的積極性。

          2、通過自主學習、組內(nèi)交流、合作,達到培養(yǎng)學生自主、互助的精神。

          3、給足夠的時間讓學生學習,讓學生發(fā)現(xiàn)。

          4、多層次的練習形式,有利于學生對知識進一步的理解與掌握,并及時有效地鞏固強化概念。

          5、教師始終把學生放在主體地位,為學生提供了一個自己去想去說,去回味知識掌握過程的舞臺,這樣將更有助于學生掌握正確的學習方法,總結失敗原因,發(fā)揚成功經(jīng)驗,培養(yǎng)良好的.學習習慣。

          6、自學思考匯報交流既有利于每個學生的自主探索,保證個性發(fā)展,也有利于教師考察學生思維的合理性和靈活性,考察學生是否能用清晰的數(shù)學語言表達自己的觀點。

          在具體教學過程中,我從以下幾個方面入手:

          一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。

          教學中我先利用課件演示了“我說你答”的游戲讓學生回顧:天平兩端同時加上或減去同樣的重量,天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎。然后出示例題X+20=70

          二、利用 等式性質(zhì)解方程-,初步感悟它的妙用

          在計算過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,通過討論:方程X+20=70中左右兩邊同時減去的為什么是20,而不是其它數(shù)呢?讓學生明白:左邊減去20是為了使方程左邊只剩,右邊減去20是為了使方程兩邊仍然相等!不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學習活動是那么的有滋有味,進而使我很順利地就完成了本課的教學任務。

          三、確保正確率,及時進行檢驗。

          原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學生在這個方面就會顯得不耐煩,在經(jīng)歷了一個詳細的檢驗過程之后,然后教給學生一個簡便的檢驗方法,學生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。

          通過教學,發(fā)現(xiàn)學生對這種方法掌握的很好,而且很樂意用等式的性質(zhì)來解方程,但同時讓我感到了一點困惑:

          從教材的編排上,整體難度下降,有意避開了,形如:A—X=B 和 A÷X=B等類型的題目。把用等式解決的方法單一化了。在實際教學中,如果用等式性質(zhì)來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學生還很難掌握這樣方法。但是用減法和除法各部分之間的關系解答就比較簡單。這會不會與教材主倡導的用等式的性質(zhì)解決問題有矛盾呢?

        《解方程》教學反思 2

          教學解方程共5個例題,以前的教法是利用加減乘除各部分之間的關系解;新教材使用的方法是利用等式的性質(zhì),應該說這種方法不用怎樣理解,方程兩邊同時加減乘除一個數(shù),方程兩邊依然相等。而利用加減乘除各部分之間的關系解,學生由于因各部分之間的關系混亂容易出錯,而初中的教學也是利用了等式的性質(zhì),于是和本組老師討論了一下,確定利用等式的性質(zhì)進行教學,最后學生掌握方法之后,再利用加減乘除各部分之間的關系講解一遍。然后讓學生根據(jù)自己實際情況靈活運用。

          可是跟設想的不一樣,利用等式的性質(zhì)進行教學時,有些地方學生還是不好理解,我分析了一下,覺得存在這樣的問題。

          1、如32-X=45,6÷x=3這樣的方程,X在里面,學生不好理解為什么方程兩邊同時加X或同時乘X,我和學生又從天平開始,講解,如果兩邊同時減32,或同時除以6,依然算不出X,我們?nèi)绻瑫r加X或同時乘X,然后變成a+X=b或ax=b的.形式,再利用所學的方法進行解方程就可以了,可是依然有部分學生沒有掌握起來。

          2、書寫問題,利用等式的性質(zhì)進行解方程時,書寫比較繁瑣,學生在比較之后,還是覺得用加減乘除各部分之間的關系解題時,書寫簡單一些。

          所以,鑒于存在的問題,應該讓兩種方法同時并存,讓學生根據(jù)自己情況,靈活選擇解方程的方法。

        《解方程》教學反思 3

          解方程是數(shù)學領域里一個關鍵的知識,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級的學生開始學習解方程,作為教師的我更應該讓學生吃透這方程,突破這重難點。

        在教這單元之前,我一直困惑解方程要采用初中的“移項”解題,還是運用書本的“等式性質(zhì)”解題,還有老教材中提到的運用關系式各部分之間的關系來解決?面對困惑,向老教師請教,學生該吸收那種方法呢?困惑,學生該如何下手,運用“移項”解題,學生對于這個概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)”解題時,在碰到a-x=b和a÷x=b此類的方程,學生能如何下手,“四則運算之間的'關系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學參考書):新教材編寫者如此說明:長期以來,小學教學簡易方程時,方程變形的依據(jù)總是加減運算的關系或乘除運算之間的關系,這實際上是用算術的思路求未知數(shù)。到了中學又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數(shù)起步教學的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標準》的要求,從小學起就引入等式的基本性質(zhì),并以此為基礎導出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學數(shù)學教學的銜接。從這不難看出,為了和中學教學解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學生清楚準確地掌握實際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學生帶來的是局部的銜接,而存在局部對學生會更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運用等式基本性質(zhì)教學孩子會解簡單的方程,以便初中學習可以銜接,而初中的“移項”也會順利的接收,但是面對現(xiàn)在五年級的思維和解題的方便性,我再教學老教材的“四則運算關系”解放程,至少這樣能讓現(xiàn)在的學生會解各種題型的方程。在我看來,這樣的教學書本的知識不丟,方法又可以多種變通。

          通過這塊知識的整理,我感覺到教材需要教師好好的研究,才能用最合適的方式去教導學生,數(shù)學經(jīng)常存在一種一題多解情況,老師就是引導學生走最好最合適的路。

        《解方程》教學反思 4

          教材的設計打破了傳統(tǒng)的教學方法,在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,然后利用關系來求出方程中的未知數(shù),《解方程(二)》教學反思。而北師大版教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。

          原來教學由于我個人比較偏好于傳統(tǒng)的教學方法,在教學的過程中沒有特別強調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學生沒能很好地理解等式的性質(zhì),所以大部分的學生在解方程的時候,還是運用了加、減法各部分間的關系來計算,只有極個別的學生懂得運用等式的性質(zhì)來解決問題。在這次實驗教學的過程中,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的`解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的過程是一個等式的恒等變形,教學反思《《解方程(二)》教學反思》。并能站在“學生是學習的主人”和“教師是學習的組織者、引導者與合作者”的這一角度上,為學生創(chuàng)設學習此課的情境,提供動手操作、實踐以及小組合作、討論的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。

          盡管如此,仍然存在著許多不足,比如:在驗證猜想時,應從一個一個具體的等式抽象到未知的等式,學生容易接受,而我是直接用抽象的等式驗證的,學生不太容易接受。還有在解方程時,算理講得不太清楚,學生在解方程時,有部分學困生學起來有困難。

          在今后的教學中,一定要吃透教材,認真鉆研教材,才能上出優(yōu)質(zhì)課。

        《解方程》教學反思 5

          方程最大的意義,就是讓未知數(shù)參與進式子,利用順向思維,降低思考的難度。

          五年級數(shù)學上冊第四單元的教學內(nèi)容是“簡易方程”。為了更好地實現(xiàn)小學與初中知識的接軌,新教材對簡易方程的解法進行了一次改革,將舊教材利用加減乘除法各部分之間關系解方程,改為讓學生根據(jù)天平的原理來學習方程解法,也就是利用等式的基本性質(zhì)來解方程。舉個例子:

          舊教材:

          x+48=127

          x=127-48

          依據(jù)運算之間的關系:一個加數(shù)等于和減另一個加數(shù)。

          新教材:

          x+48=127

          x+48-48=127-48

          依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。

          在實際教學中發(fā)現(xiàn),同舊教材的方法相比,現(xiàn)行教材中的這種解法,學生更容易接受,他們不必再去記“一個加數(shù)=和-另一個加數(shù)、被減數(shù)=減數(shù)+差……”這些關系式了,只需根據(jù)等式的基本性質(zhì),想辦法讓方程左邊只剩下X就行。學生很快就將這種解法運用自如,毫不費力。

          可是,當學到用方程解決實際問題時,卻出現(xiàn)了狀況。

          新教材在改革方程解法的同時,有一個相應的'調(diào)整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因為利用等式的基本性質(zhì)解a-x=b、a÷x=b,方程變形的過程及算理解釋比較麻煩。然而,在列方程解決實際問題時,卻不可避免地會出現(xiàn)以上兩種類型的方程。如:“一本書有65頁,王紅看了一部分后,還剩27頁。王紅已經(jīng)看了多少頁?”學生很自然就列出65—x=27這樣的方程。

          如何解決這個難題?細讀教參,發(fā)現(xiàn)編者的思路是,當需要列出形如a-x=b或a÷x=b的方程時,要求學生根據(jù)實際問題的數(shù)量關系,改列成形如x+b=a或bx=a的方程。這樣的處理方法倒是可以繼續(xù)回避上述的兩種特殊方程,可是,新的矛盾又出現(xiàn)了。

          我們知道,方程最大的意義,就是讓未知數(shù)參與進式子,利用順向思維,降低思考的難度。這是方程方法的優(yōu)越性。然而,在刻意回避a-x=b或a÷x=b這樣的方程時,往往會出現(xiàn)和方程思想的基本理念相違背的現(xiàn)象。

          如“6枝鋼筆比4枝鉛筆貴12元。鋼筆每枝3元,鉛筆每枝多少元?”

          合理的做法應是“設鉛筆每枝X元”,從順向思考,列出方程為“6×3-4X=12”。然而,按新教材的編排,學生無法解這樣的方程,只能轉列成“4X+12=6×3”。再如:一共有128人平均分成Х組,每組8人,學生們都不假思索地列出了128÷X=8,等到解方程時才發(fā)現(xiàn)利用天平的原理沒法繼續(xù),只好改列成8X=128。

          如此一來,學生怎么能充分體會方程順向思維的優(yōu)越性?

          如果說用舊教材的思路解方程對初中學習有負遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,如何是好?

          我只能把新舊教材兩種方法進行互補,告訴學生,遇到這類方程時,一種解決的辦法是按減法和除法各部分之間的關系進行解答;另一種方法就是先按等式的性質(zhì),把方程的左右邊都加或乘一個x,然后把方程的左右兩邊交換一下位置,再按照a-x=b及a÷x=b的方法進行解答。

        《解方程》教學反思 6

          五年級第四單元教材的設計打破了傳統(tǒng)的教學方法。在以前人教版教材中,學著解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。

          在教學前,由于我個人比較偏好于傳統(tǒng)的教學方法,總覺得用等式的性質(zhì)解方程比較麻煩。為了轉變自己的教學思想,更新教學觀念,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的.過程是一個等式的恒等變形。并能站在“學生是學著的主人”和“教師是學著的組織者、引導者與合作者”的這一角度上,()為學生創(chuàng)設學著此課的情境,通過直觀演示,充分給學生提供小組交流的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學著活動是那么的有滋有味,進而使我很順利地就完成了本課的教學任務。

        《解方程》教學反思 7

          教材是利用等式的性質(zhì)來解方程。通過天平游戲,探索等式兩邊都加上(或減去)同一個數(shù),等式仍然成立,等式兩邊都乘一個數(shù)(或除以一個不為0的數(shù)),等式仍然成立的性質(zhì)。利用探索發(fā)現(xiàn)的等式的性質(zhì),解簡單的方程。如求出y+8=10中的未知數(shù)y。教材呈現(xiàn)了兩種思路。一種是學生直接想“?+8=10”,從而得出答案。另一種是利用等式的性質(zhì)解方程,即“方程的兩邊都減8”的方法。y+8-8=10-8,y=2。這樣解方程,剛開始時,為了學生理解方便,等號左邊的“+8-8”都要寫出來,會比較麻煩,也容易出錯!稊(shù)學課程標準》提倡算法多樣化的新理念,激發(fā)了我對解方程這課從不同的角度來進行解讀和探討,因此,在學生理解了用等式的性質(zhì)解方程后,我又留給學生一定的時間和空間,讓學生獨立思考,發(fā)揮各自的聰明才智,自主探索,找出不同的解題方法。

          學生經(jīng)歷了獨立思考,掌握的`知識才更深刻、更透徹。久而久之,將促使學生養(yǎng)成獨立思考的習慣,培養(yǎng)了學生解決問題的能力。將學生的方法整理后,我又適時給學生提供了另外兩種解方程的方法,利用加、減、乘、除法各部分之間的關系來解方程和通過移項來解方程。

        《解方程》教學反思 8

          學生從五年級就開始接觸簡易方程,經(jīng)歷一年多的學習對于方程有了一定的認識,然而為何要設單位“1”的量為未知數(shù)這個問題在列方程解決稍復雜的分數(shù)實際問題時就一直困擾著學生。列方程解決稍復雜的百分數(shù)實際問題是小學階段的最后一個有關方程學習的單元,因此有必要從本質(zhì)上去撥開學生心中為何要設單位“1”的量為未知數(shù)的那團云。正好借助這節(jié)課通過對比分析的方法幫助學生很好的解決這個困惑。

          案例描述:蘇教版數(shù)學六年級下冊教材

          教材例5:朝陽小學美術組有36人,女生人數(shù)是男生人數(shù)的80%。美術組男生、女生各多少人?

          學生能很快根據(jù)題目條件進行相關的找單位“1”分析數(shù)量關系的.解題前期準備,經(jīng)歷這這兩步后學生通過已有經(jīng)驗可以很快確定用方程的策略來解決這個問題。

          在教學的過程中,筆者故意提出:這里男生人數(shù)和女生人數(shù)都是未知的,那么你們覺得怎樣設未知數(shù)比較合理呢?學生在底下開始異口同聲地回答設單位“1”的量也就是男生人數(shù)為未知數(shù)比較合理。設美術組有男生X人,女生就有80%X人。那么根據(jù)等量關系式:男人人數(shù)+女生人數(shù)=36學生很自然地列出方程

          X+80%X=36。就在大家十分“得意”的時候,一個小男孩發(fā)表了自己不同的意見:“也可以把女生人數(shù)設為X!眲傞_始很多同學覺得有點不可思議,以前做這類問題不都是將男生人數(shù)(單位“1”)設為未知數(shù)X的嗎?抓住這個千載難逢的機會,我就讓他說說他是怎么想的。他是這么說的:設女生人數(shù)是X人,男生人數(shù)是X÷80%人,根據(jù)等量關系式:男人人數(shù)+女生人數(shù)=36列出方程:X+X÷80%=36。聽完他精彩的發(fā)言,大家恍然大悟,原來還可以這樣?

          仔細回想這個聰明男孩的問題,原來數(shù)學真的需要動腦。這個問題在學習分數(shù)除法之前教材是一直在回避的,到了這里我靈機一動將題目改成:教材例5:朝陽小學美術組有36人,女生人數(shù)是男生人數(shù)的2倍。美術組男生、女生各多少人?那你覺得這個問題我們以前是怎么解決的?學生很自然的想到把一份數(shù)男生人數(shù)設為X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人數(shù)設為X人呢?學生思考了一會列出:X+X÷2=36,這個方程沒有學習分數(shù)除法之前學生是沒有辦法解出來的,可能這就是教材一直回避的重要原因吧。但是學生學習了分數(shù)除法,理解了分數(shù)和百分數(shù)的意義之后憑借自己的理解列出超乎常規(guī)的方程的勇氣是值得肯定的。經(jīng)過這兩個問題的對比,學生明白了設未知量也是很重要的。課上到這里,并不是去推翻學生已有的經(jīng)驗,而是讓學生有這樣一種意識:數(shù)學很多時候不是一種硬性規(guī)定,遇到這類問題只能設單位“1”的量為未知數(shù)。于是我順水推舟讓學生比較了這兩個方程:X+80%X=36、X+X÷80%=36哪一個解起來不較容易?學生通過計算終于明白:X+80%X=36方程的優(yōu)越性,于是又回到了:男生人數(shù)和女生人數(shù)都是未知的,那么你們覺得怎樣設未知數(shù)比較合理呢?通過這樣的對比進一步讓學生體驗到了:設男生人有X人(單位“1”的量為未知數(shù)的)合理性,不僅僅能很快表示出女生80%X人,而且X+80%X=36是學生熟悉的形如:aX+bX=c(這里a,b,c已知),而X+X÷80%=36這個方程不是學生熟悉的類型,是需要學生根據(jù)除法將它轉化為aX+bX=c,這一步轉化至關重要。經(jīng)過上述的兩次對比學生終于明白了:為什么在設未知量的時候一般要把單位“1”的量設為未知數(shù)了。有了這樣的深刻的體驗,學生解決這類問題就十分自然,心中的困惑可能就會煙消云散。

        《解方程》教學反思 9

          有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順水推舟,毫不費力。學生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導學生會解形如a-x=b及a÷x=b方程。

          本以為按新課標教材這兩類方程小學階段不用掌握,但在學期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向學生補充講解,且屬于學生必會、考試必考內(nèi)容。原因如下:1、在列方程解決實際問題時,學生中往往會出現(xiàn)以上兩種類型方程,教師難以回避。2、如果教師有意回避,會使學生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯誤理解。

          基于上述原因,我今天在教學完例2后為學生補充了相應內(nèi)容,但教學效果較差。雖然許多學生能根據(jù)加減乘除各部分之間的關系推導出X的.值,但當要求他們根據(jù)等式的性質(zhì)來解答時,嘗試成功。通過指導,全班也只有50%左右的學生基本掌握解答的方法。分析此次教學失敗的原因可能是安排的時機還不夠成熟。因為學生剛接觸解方程沒多久,還須一段時間鞏固教材中最基本的常見方程類型,而今天補充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學困生聽完拓展練習后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應根據(jù)等式的性質(zhì)直接將等號兩邊同時除以5求解的,可卻有學生先將等式兩邊同時除以X,變成了“1.5÷X=5”, 這可真是越變越復雜。

          值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,你們覺得是按加減乘除法各部分之間的關系教好呢,還是按等式的性質(zhì)教學好呢?

        《解方程》教學反思 10

          縱觀整節(jié)課教學,我認為已經(jīng)基本把握教材的重難點。在講解“方程的解”定義時,能從驗算例子答案出發(fā),讓學生體會到“方程左右兩邊相等”的特征,從而能更好地理解“方程的解”的定義。

          在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學生說出采用各自不同的方法求解方程的解,讓學生明白“解方程的各種方法,目的只有一個,那就是求出解,但不同的方法有自身不同的求解過程”著重讓學生理解“求解過程”。

          在這基礎上,讓學生討論發(fā)現(xiàn)兩個概念定義之間的區(qū)別。

          在講授“解方程:X+7=13”例題時,我安排一個成績中等的學生上來解答(因為是新課,學生還沒有接觸過正確規(guī)范的書寫格式,學生的求解方法和過程步驟,能代表整個班級的情況。況且學生的求解過程能起到反例的作用,為下面比較教學——從對比中認識正確的求解過程做好鋪墊)

          板書正確書寫格式后,讓學生通過比較發(fā)現(xiàn)該如何正確規(guī)范地求解方程的解。

          整節(jié)課教學存在幾點不足:

          1、學生課堂練習量少。這與定義的教學花費太多時間有關。

          2、對學生新課之前的求解方程的解的方法缺少關注。解方程是可以有很多方法的,需要鼓勵學生的多向發(fā)散思維。

          3、教師課堂上雖然提到“對于一個X的值,它究竟是不是方程的解呢?為什么?”,但還是缺乏相關練習,因為這一內(nèi)容對理解“方程的`解”有極強的意義。

          《方程的意義》這節(jié)課與學生的生活有密切聯(lián)系,通過本節(jié)課的學習,要使學生經(jīng)歷從實際問題中總結概括出數(shù)學概念的過程。讓學生初步了解方程的意義,理解方程的概念,感受方程思想。使學生經(jīng)歷從生活情境到方程概念的建立過程,培養(yǎng)學生觀察、猜想、驗證、分類、抽象、概括、應用等能力。通過自主探究,合作交流等數(shù)學活動,激發(fā)學生的興趣,所以我在教學設計的過程中十分重視學生原有的知識基礎,用直觀手法向抽象過渡,用遞進形式層層推進,讓學生經(jīng)歷一個知識形成的過程,并盡可能讓他們用語言表達描述出自己對學習過程中的理解,最后形成新的知識脈絡。下面就結合這節(jié)課,談談我在教學中的做法和看法。

          一、復習導入,激趣揭題

          該環(huán)節(jié)主要復習與新知識有間接聯(lián)系的舊知識,為學習新知識鋪墊搭橋,以舊引新,方程是表達實際問題數(shù)量關系的一種數(shù)學模型,是在學生熟悉了常見的數(shù)量關系,能夠用字母表示數(shù)的基礎上教學的,因此開課伊始我結合與學生有關的一些生活現(xiàn)象出示了一組題,要求學生用含有字母的式子表示出來。這些題的出現(xiàn)即能讓學生復習鞏固以前所學的知識也能讓學生體會到我們生活中有很多現(xiàn)象都能用式子表示出來,激起學生的學習興趣,引出這節(jié)課的學習內(nèi)容,這樣的開課很實際,很干脆,也很有用。

          二、實踐操作,建立方程模型

          1.用天平創(chuàng)設情境直觀形象,有助學生理解式子的意思

          等式是一個數(shù)學概念。如果離開現(xiàn)實背景出現(xiàn)都是已知數(shù)組成的等式,雖然可以通過計算體會相等,但枯躁乏味,學生不會感興趣。如果離開現(xiàn)實情境出現(xiàn)含有未知數(shù)的等式,學生很難體會等式的具體含義。天平是計量物體質(zhì)量的工具,但它也可以通過平衡或者不平衡判斷出兩個物體的質(zhì)量是否相等,天平圖創(chuàng)設情境,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學生理解式子的意思,也充分利用了教材的主題圖。

          2、自主操作,提高能力,激發(fā)興趣

          在探究方程的意義時我特意給學生提供操作天平平衡的不同材料,讓學生分組實踐,通過操作、觀察天平的狀態(tài)得到許多不同的式子,由于材料不同,每個組所得的式子也不同,有的全是已知數(shù)的式子,有的是含有未知數(shù)的式子,多種多樣的式子激起學生的探究欲望激發(fā)學生觀察興趣。

          三、實際運用,升華提高

          在練習設計中由易到難,由淺入深,使學生的思維不斷發(fā)展,使學生對于方程意義的理解更為深刻,特別使讓學生自由創(chuàng)作方程這一練習題,既讓學生應用了知識又培養(yǎng)了學生的創(chuàng)新思維。

          本課時教學設計,改變了傳統(tǒng)學習方式,利用課本的靜態(tài)資源通過現(xiàn)代化教學手段,把數(shù)學情景動態(tài)化,大大激發(fā)了學生的學習興趣,充分體現(xiàn)了以學生為主,讓學生獨立思考,不斷歸納,把學生從被動地接受知識轉為自己探究,為學生提供了自主探究,合作交流的空間。在學習中體會到了學習數(shù)學的樂趣,在獲取知識的同時,情感態(tài)度,能力等方面都得到發(fā)展。當然這節(jié)課還存在一些問題,比如對等式與方程的關系突出得不夠,讀學生“說”的訓練不夠,應該給學生更多的表述的機會。

        《解方程》教學反思 11

          解方程的內(nèi)容主要是在五年級就學過的,但六年級上期仍然出現(xiàn)了解方程的內(nèi)容,說明了這個知識點的重要性,既是重點,又是難點。在具體的解方程過程中,通過學生的課堂活動和課后作業(yè)反饋,總的說來,還是存在很大的問題。我出了12個題,全對的占少數(shù),一般要錯四個左右。下來后我進行了深刻的反思。發(fā)現(xiàn)了幾個主要錯誤:

          1 馬虎。體現(xiàn)在抄題抄錯,全班64人有6個抄錯了題。

          2 較復雜點的解方程,思路混亂,不知道把哪一部分看作“整體”。 3 過于依賴計算器,對于除不盡的筆算出錯。

          4錯得最多的是減數(shù)和除數(shù)中含有未知數(shù)的情況。

          針對以上幾個錯誤,我認真做了分析,主要的原因有下面幾個: 1 課前過于高估學生,沒有系統(tǒng)的復習相關內(nèi)容。

          2 現(xiàn)在這個班是上個五年級兩個班重新分的班,下來我問了前面教過的數(shù)學老師,兩個老師教的方法不一樣。

          3 作業(yè)量不夠。

          所以,在后期的教學中做了一些調(diào)整:

          1 系統(tǒng)復習了相關知識。

          2 多作例題講解,由易入難。

          3 有針對性的出題,容易出錯的'地方進行大量的練習。

          4 搞了一個“我是一個小老師”的活動,全對的同學給其他同學當老師,一個對一個的教。

          5 要求每個同學都獨立的出一個解方程的題,然后請一個同學完成并作評價。

          經(jīng)過鍛煉,現(xiàn)在對解方程這個這知識點,同學們興趣和完成率大有提高。

        《解方程》教學反思 12

          這節(jié)課的內(nèi)容包括兩個方面:一是探索并理解“等式兩邊同時加上或減去同一個數(shù),所得結果仍然是等式”;二是應用等式的性質(zhì)解只含有加法和減法運算的簡便方程。解方程是學生剛接觸的新鮮知識,學生在知識經(jīng)驗的儲備上明顯不足,因此數(shù)學中老師要時刻關注學生的學習狀態(tài),引領學生經(jīng)歷將現(xiàn)實、具體的.問題加以數(shù)學化,引導學生通過操作、觀察、分析和比較,由具體到抽象理解等式的性質(zhì),并應用等式的性質(zhì)解方程。在這節(jié)課的教學中,讓學生理解并掌握等式的性質(zhì)應是解決一系列問題的關鍵。

          一、讓學生在操作中發(fā)現(xiàn)

          課開始,老師出示天平并在兩邊各放一個50克的砝碼,“你能用式子表示出兩邊的關系嗎?”學生寫出 50=50;老師在天平的一邊增加一個20克砝碼,“這時的關系怎么表示?”學生寫出50+20>50,“這時天平的兩邊不相等,怎樣才能讓天平兩邊相等?”學生交流得出在天平的另一邊增加同樣重量的砝碼;“你有什么發(fā)現(xiàn)嗎?”“自己寫幾個等式看一看。”通過具體的操作為學生探究問題,尋找結論提供了真實的情境,輔以啟發(fā)性、引領性的問題,讓學生經(jīng)歷了解決問題的過程,并在問題的解決中發(fā)現(xiàn)并獲得知識。

          二、讓學生在發(fā)現(xiàn)中操作

          引入了等式的性質(zhì),其目的就是讓學生應用這一性質(zhì)去解方程,第一次學生解方程,學生心理上難免會有些準備不足,為了幫助學生應用等式的性質(zhì)解方程,教者先利用天平所顯示的數(shù)量關系,引導學生發(fā)現(xiàn)“在方程的兩邊都減去100,使方程的左邊只剩下x”,通過這樣有步驟的練習,幫助學生逐漸掌握解方程的方法。

        《解方程》教學反思 13

          1、教材的編排上難度下降。有意避開了,形如:7.8—X=2.6,12÷X=1.2等類型的題目。把用等式解決的方法單一化了,這和提倡算法多樣化又有了矛盾。盡管老師一再強調(diào)用等式的性質(zhì)解,還是有多數(shù)學生用原來的方法解答。

          2、強調(diào)書寫格式得有層次。告訴學生利用等式的性質(zhì)來解方程熟練以后特別快。同時強調(diào)書寫格式。通過教學,學生利用等式的性質(zhì)學生能解決簡單的.方程,如果有過程,方程中的等號不易上下對齊,這點問題不大。到熟練之后省去過程時再強調(diào)格式。

          3、內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,()可以實際上反而是多了。教師要給他們補充X在后面的方程的解法。要教他們列方程時怎么避免X在后面這樣方程的出現(xiàn)等等。

          在實際教學中我們要求學生較熟練地利用等式的方法來解方程,用這樣的方法來解方程之后,書本中不再出現(xiàn)X做減數(shù),除數(shù)的方程題了,但學生在列方程解實際應用時,學生列出的方程中還有這樣的題目,但不會解答,這時我們又要強調(diào)算法多樣化,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學生還很難掌握這樣方法。有的學生又不得不用除、減法各部分間的關系做題。在實際的方程應用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。因此教學中我還是對學生說盡量用方程的性質(zhì)解,若遇到用等式的性質(zhì)解決不了時,可以用以前學過的知識解答。認識方程教學反思解方程教學反思方程教學反思

        《解方程》教學反思 14

          本節(jié)課中學生學習等式的性質(zhì)是沒有多大的難度的,在運用等式的性質(zhì)進行解方程時,難度也不是很大。課本安排了不少解方程的題目,學生都能一一解決。仔細觀察課本,其實會發(fā)現(xiàn)課本上在慢慢增加根據(jù)具體情境列出方程并解方程的題目。這是本單元的難點,這就需要讓學生根據(jù)題目中的'等量關系來寫出方程。將等量關系寫出方程和學生之前根據(jù)等量關系解答是不同的。

          學生不太習慣,導致列的方程奇形怪狀。這里有必要深入探究方程的含義。根據(jù)上節(jié)課的學習學生知道:方程是從等式演變而來。含有字母的等式才叫作方程。換言之,方程其實是一種含有未知量的等量關系的一種表達式。我們只需要將等量關系找到再將其表達成方程即可。學生出現(xiàn)問題的原因是以往大部分的解題經(jīng)驗所寫出的等量關系是從結果出發(fā)來寫的,一切為結果服務這樣一種逆向的思維過程。而現(xiàn)在寫出題目中的等量關系卻是從條件出發(fā)的一種正向思維。

          雖然在三年級時,我們學習了從條件出發(fā)和問題出發(fā)兩種不同的解題策略,但這離幫助學生形成這兩種思維還是遠遠不夠的。通過這樣的分析,那我們在引導孩子列方程時,就要從條件出發(fā),找等量關系來列方程了。先要幫助學生找出等量關系,在引導孩子根據(jù)等量關系表達出相應的方程。這一點的學習時必須的。

        《解方程》教學反思 15

          今天對五年級上冊《解方程》進行了教學。本課主要對教學例一和例二進行了教學。

          一、本節(jié)課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設計和安排上,盡量為突破教學重點和難點服務,因此我進行了大膽的嘗試,在講解方程的解時,給學生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),由此引起了學生的好奇心,通過練習讓學生充分感知“方程的解”的神奇之處。既讓學生充分理解“方程的.解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學會了本節(jié)課的知識。對于概念的理解也很扎實。

          二、在練習題的安排上也做了精心的安排,當講授完利用天平平衡的道理解方程后,馬上進行了“填空練習”,這四個練習題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學和課后的練習看,學生對解方程掌握的還不錯。

          三、本課主要對解方程進行了解題練習。通過搶奪小紅花等游戲的形式大大提高了學生學習數(shù)學的樂趣和興趣!

          四、通過本課的作業(yè)檢測,有少量學生還是對本課的內(nèi)容練習不是很到位。需要教師在課下不斷的指導。

          五、學生對于方程的書寫格式掌握的很好,這一點很讓人欣喜。

          總之,“興趣是學生最好的老師”,只要緊緊抓住這一點,教學質(zhì)量的提高指日可待。

        【《解方程》教學反思 】相關文章:

        解方程的教學反思02-26

        《解方程》教學反思05-02

        數(shù)學解方程教學反思04-12

        《解方程二》教學反思03-28

        《解方程》教學反思(精選20篇)05-22

        解方程的教學反思15篇03-10

        解方程教學設計10-07

        解方程教案04-26

        解方程二教案12-10