乘法分配律教學反思合集[15篇]
身為一名優(yōu)秀的人民教師,教學是我們的任務之一,寫教學反思能總結我們的教學經(jīng)驗,那么寫教學反思需要注意哪些問題呢?下面是小編為大家整理的乘法分配律教學反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
乘法分配律教學反思1
《乘法分配律》是本章的難點,它不是單一的乘法運算,還涉及到加法運算。教材對于這部分內容的處理方法與前面講乘法結合律的方法類似。在設計本教案的過程中,我一直抱著“以學生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學習任務、參與共同的學習活動過程中實現(xiàn)不同的人的數(shù)學水平得到不同發(fā)展的教學方式。結合自己所教案例,對本節(jié)課教學策略進行以下幾點簡要分析:
一、教師要深入了解各層次學生思維實際,提供充分的信息,為各層次學生參與探索學習活動創(chuàng)造條件,沒有學生主體的主動參與,不會有學生主體的主動發(fā)展,教師若不了解學生實際,一下子把學習目標定得很高,勢必會造成部分學生高不可攀而坐等觀望,失去信心浪費寶貴的學習時間。以往教學該課時都是以計算引入,有復習舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。這樣所設的起點較低,學生比較容易接受。
二、讓學生根據(jù)自己的'愛好,選擇自己喜歡的方法列出來的算式就比較開放。學生能自由發(fā)揮,對所學內容很感興趣,氣氛熱烈。到通過計算發(fā)現(xiàn)兩個形式不一樣的算式,結果卻是一樣的。這都是在學生已有的知識經(jīng)驗的基礎上得到的結論,是來自于學生已有的數(shù)學知識水平的。
三、總體上我的教學思路是由具體——抽象——具體。在學生已有的知識經(jīng)驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,老師都予以肯定和表揚,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
四、在學習中大膽放手,把學生放在主動探索知識規(guī)律的主體位置上,讓學生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應用規(guī)律。
在教學過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內容時,學生難以完整地總結出乘法分配律,另外還有部分學困生對乘法分配律不太理解,運用時問題較多等。
乘法分配律教學反思2
乘法分配律是學生較難理解和敘述的定律,比起乘法交換率和乘法結合率男掌握的多。因此在本節(jié)課教學設計上,我結合新課標的一些基本理念和學生的具體情況,注重從實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在不斷的感悟和體驗中學習新知識。
《數(shù)學課程標準》指出:“學生的數(shù)學學習內容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的!睌(shù)學教育家波利亞曾經(jīng)說過:“數(shù)學教師的首要責任是盡其一切可能,來發(fā)展學生解決問題的能力!倍覀冞^去的教學往往比較重視解決書上的數(shù)學問題,學生一旦遇到實際問題就束手無策。因此,上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設了一個肯德基餐廳用餐的情境,使學生置身于非常熟悉的生活情境中,極大地激發(fā)了學生的學習欲望。學生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學生的猜想能力,又培養(yǎng)了學生驗證猜想的能力。學生通過自主探索去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,主體性得到了充分的發(fā)揮。
同時,我還注重學生的合作與交流,多向互動。倡導課堂教學的動態(tài)生成是新課程標準的重要理念。在數(shù)學學習中,每個學生的`思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學生在數(shù)學學習中得到不同的發(fā)展,我在本課教學中立足通過生生、師生之間多向互動,特別是通過學生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構。學生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學生的問題意識,又拓寬了學生思維能力,學生也學得積極主動。
應用規(guī)律,解決實際問題是數(shù)學學習的目的所在。在練習題型的設計上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學生逐步加深認識,在弄清算理的基礎上,學生能根據(jù)題目的特點,靈活地運用所學知識進行簡便運算和拓展練習。不僅要求學生會順向應用乘法分配律,而且還要求學生會反向應用。通過正反應用的練習,加深學生對乘法分配律的理解。從課堂反饋來看,學生熱情較高,能夠學以致用,知識掌握的牢固。學生通過自己的努力以及和同學的交流合作,解題速度和準確性都很理想。
本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學生參與的積極性沒有預想中那么高?赡芘c我相對缺乏激勵性語言有關。也有可能今天的題材學生不太感興趣。以后注意,學生不感興趣的材料,教師應該想辦法使呈現(xiàn)的這個材料變得能讓學生感興趣。另外,在回答問題時,個別學生的語言不夠流利、準確。對乘法分配律的敘述稍顯羅嗦,不夠堅定、自信。在這方面有待今后加強訓練和提高。
乘法分配律教學反思3
乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。
從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,是計算的一個難點。因為它不僅僅是的乘法運算,還涉及到加法運算。這節(jié)課劉老師教學目標定位準確,沒有把目標定位局限于探索理解乘法分配律,而是又引導學生應用乘法分配律進行了簡便計算,通過學生與學生之間的互相啟發(fā)與補充,老師的及時點撥,實現(xiàn)對“乘法分配律”這一運算定律的主動建構。整節(jié)課的學習氛圍輕松愉悅、學生思維活躍、教學效果非常好;就瓿山虒W任務。
劉老師對本課的教學設計很科學,思路清晰,發(fā)現(xiàn)問題——觀察比較——舉例驗證——歸納規(guī)律——運用規(guī)律,讓學生經(jīng)歷了從具體到抽象,再由抽象到具體的知識推理方法,這節(jié)課不僅教會了乘法分配律,更教會了學生一種數(shù)學思想和數(shù)學方法,這也正是新課標強調的對學生其中兩基培養(yǎng)的體現(xiàn)。
一、讓學生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的'表示意義一樣。因此得數(shù)也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會
借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學難點
讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變
形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
學生主動去設計、解決,調動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學生已有的知識經(jīng)驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。
建議:在教學中不僅要注意乘法分配律的外形結構,更要注重其內涵。如兩個算式為什么會相等?缺乏從乘法意義的角度進行理解。在理解這一概念時,尤其要抓住關鍵詞“分別”加以分析,以此深化對數(shù)學模型的理解。否則,象38×99+38這樣的形式,就會成為學生練習中的攔路虎。
乘法分配律教學反思4
乘法分配律的教學是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數(shù)學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……。
現(xiàn)在的課程改革重點之一就是如何促進學生學習方式的變革,讓他們可以用自己的眼睛去觀察,用自己的腦子去思考,用自己的語言去表述,成為一個獨特的個體。并強調從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋和應用的過程,進而使學生獲得對數(shù)學理解的同時,在思維能力方面得到進步和發(fā)展。本著對新課標的學習和認識,我對“乘法分配律”這一堂課在實踐理念方面作如下的探索。
1.在對本節(jié)課的教學目標上,我定位在:
。1)通過學生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內容。
。2)初步感受乘法分配律能使一些計算簡便。(3)培養(yǎng)學生分析、推理、概括的思維能力。
2.在本節(jié)課的教學過程的設計上,我盡量想體現(xiàn)新課標的一些理念。注重從學生的實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在體驗中學到知識。在課的開始,我通過口頭講故事創(chuàng)設情境“森林超市”,“招聘廣告”,設置懸念,激發(fā)學生的學習欲望和學生學習數(shù)學的興趣:你們去過森林超市嗎?想不想去看一看?小狗開了一家森林超市,想通過招聘廣告應聘一名營業(yè)員呢!我們一起來看一看。小兔、小豬看到廣告后,前來應聘,小熊決定進行考試過三關,擇優(yōu)錄取。小狗還想邀請同學們一起參加這個活動,你們愿意嗎?學生已迫不及待地說想。
接著我分別讓班上的一組、二組分別和三組、四組扮演小豬和小兔進行解題比賽,學生學生們積極性極高并爭先恐后地做題,同時讓學生說說你是怎么做的'?學生嘗試通過不同的方法先后得出:
。1)50×8+125×8 =400+1000=1400(元),(50+125)×8=175×8=1400(元);
。2):(55+45)×5 =100 ×5 =500(元),55×5+45×5=275+225=500(元);
(3)15×4+3×4 =60+12=72(元),(15+3)×4=18×4=72(元)。
此時教師讓學生觀察通過不同的計算方法得到了相同的結果,這兩個算式用“=”連接。通過不同計算得到相同的結果,讓學生從中初步感受了乘法分配律的模型。為了讓學生切實體會生活中確實有乘法分配律的知識。在此我又設置了一個問題:上面兩題的結果,左邊和右邊的式子也有相同的形式,這里是否存在著規(guī)律?讓學生帶著一點疑惑,又急著想證明的愿望繼續(xù)探究。這時學生心中已具有了乘法分配律的模型。當學生有了上面的真實感受,讓學生列舉出類似的等式已水到渠成。讓學生觀察剛才得到的一系列等式,小組討論:從這些等式中你發(fā)現(xiàn)了什么規(guī)律?并要求同桌嘗試合作學習進行一人任意找三個數(shù)寫出等號左邊的式子讓另一個寫出等號右邊的式子,幾題過后再交換寫式子,讓他們親自感受乘法分配律,從而概括出乘法分配律。
3、在本課的練習設計上,我力求有針對性,有坡度,同時也注意知識的延伸。針對平時學生練習中的錯誤,在判斷題中我安排了(25×7)×4=25×4+7×4,讓學生通過爭論明白當(25×7)×4時用乘法結合律簡算;當(25+7)×4時用乘法分配律簡算。在填空題目中,我設計了
、伲10+7)×6=()×6 +()×6 ;
、8×(125+9)=8×()+8×();
、7×48+7×52=()×(+)
通過練習讓學生更深入地理解乘法分配律的概念,也為后面利用乘法分配律進行簡算打下伏筆。
總之,在本堂課中新的教學理念有所體現(xiàn),但在具體的操作中還缺乏成熟的思考,對學生的積極性沒有充分調動起來,而且在生活情境的創(chuàng)設中對情境的趣味性、興趣性、情境性不能很好的體現(xiàn),情景創(chuàng)設題目有點多,需減少一題,留給學生思考的時間還不夠。這一系列問題有待我在今后的教學過程中不斷的改進和提高。最后,衷心地感謝各位領導的指導并提出建議!
乘法分配律教學反思5
教材提供了這樣一個主體圖:春季里,同學們開展植樹活動,一共有25個小組,每組里4人負責挖坑、種樹,2人負責抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學生會用兩種不同的方法分別列出算式,接著通過計算發(fā)現(xiàn),兩個算式可以用=連接,即25(4+2)=254+252,從而通過比較等號兩邊兩個算式的不同與相同,概括出乘法分配律。當我在一個班按照此教學設計教學后,我發(fā)現(xiàn)效果并不理想,表現(xiàn)有兩點:
、儆行⿲W生只是機械的.記憶了乘法分配律的公式,例如看到3544不能想到3540+354;
、谟捎跊]有真正理解乘法分配律的內涵,所以完全不能理解其逆應用以及當兩個數(shù)的差乘一個數(shù)時應用乘法分配律。如:他們認為6464+3664(64+36)64;265(105-5)=265105-2655。
針對此情況,我重新設計了教案。增加了一個問題:負責挖坑、種樹的同學比負責抬水、澆水的同學多多少人?這樣學生又列出另外兩個算式,通過計算后用等號連接: 25(4-2)=254-252,接下來,我引導學生觀察、對比兩組算式,充分地去發(fā)現(xiàn)相同點與不同點。這樣一來,促使了學生去尋找事物之間的聯(lián)系,抓住本質,尋找共同點,促進交流,順利地實現(xiàn)了自我構建和知識創(chuàng)造。學生的發(fā)現(xiàn)自然也就更豐富、更有深度了:無論是兩個數(shù)的和還是兩個數(shù)的差去乘一位數(shù),都可以先把他們與這個數(shù)分別相乘,再相加或者再相減。此外,我還引導學生從右到左的觀察等式,嘗試用乘法的意義去理解乘法分配律,即:4個25加2個25就等于(4+2)個25,4個25減2個25就等于(4-2)個25,這樣幫助學生突破乘法分配律逆應用這個教學難點。
我通過對兩個班不同的教學設計,感受到:認真鉆研教材,多動心思,深入挖掘教材中的寶貴資源,會使教材的內涵更有廣度和深度,也為培養(yǎng)和發(fā)展學生思維的靈活性,提供了更廣闊的空間。
乘法分配律教學反思6
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律是四年級學習的重點,也是難點之一。也是一節(jié)比較抽象的概念課,教學時我根據(jù)教學內容的特點,為學生提供了多種探究方法,激發(fā)了學生的自主意識。
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不是急于告訴學生答案,而是讓學生自己通過舉例加以驗證。學生興趣濃厚,這里既培養(yǎng)了學生的猜測能力,又培養(yǎng)了學生驗證猜測的能力。從而讓學生知道乘法分配律給大家計算帶來的便利。從而感受數(shù)學的美。
這堂課由具體到抽象,大多需要學生體驗得來,上下來感覺很好,學生很投入,似乎都掌握了,可在練習時還是發(fā)現(xiàn)了一些問題。如:學生在學習時知道“分別”的意思,也提醒大家注意,但在實際運用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對這一現(xiàn)象我認為在練習課時要加以改進。注重從學生的實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在不斷的感悟和體驗中學習知識。
乘法分配律在乘法的運算定律中是一個比較難理解的'定律,因此在上課前我作了充分的準備。因為學生在三年級時已經(jīng)學過求長方形周長的兩種通過一節(jié)課的學習,學生對乘法分配律的大致規(guī)律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學生就感到很為難了。感覺他們只能意會不能言傳般。課本中關于乘法分配律只有一個植樹的例題,但是練習中有關乘法分配律的運用卻靈活而多變,學生們應用起來有些不知所措,針對這種現(xiàn)狀,我把乘法分配律的運用進行了歸類,分別取個名字,讓學生能針對不同的題目能靈活應用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數(shù)字與8相乘,這樣不公平,稱不上是平均分配法,學生印象很深刻,開始還有部分學生只選擇一個數(shù)與8相乘,歸納方法后學生都能正確應用了。
二、提取公因數(shù)法。如:25*40+25*60=25*(40+60)解題關鍵:找準兩個乘法式子中公有的因數(shù),提取出公因數(shù)后,剩下的另一個數(shù)字該相加還是該相減,看符號就能確定了。
三:拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關鍵在于觀察那個數(shù)字最接近整百數(shù),將它拆分成整百數(shù)加一個數(shù)或者整百數(shù)減去一個數(shù),再應用懲罰的分配率進行簡算。有了歸類,學生再見到題目就能依據(jù)數(shù)字或運算符號的特征熟練進行乘法分配律的簡算了。
以這個為切入點,從而比較順利地引入新課,正好那天是植樹節(jié)所以我又創(chuàng)讓“打比方”成為數(shù)學課堂的閃光點。
凡是教過小學數(shù)學乘法運算律的教師都會體會到“乘法分配律”是乘法運算律中最難掌握的。學生在做練習題中錯誤最多。所以課前我對教材進行了身隊深度的剖析和思考。最后想出了用打比方突破課堂難點。雖然我們的“比方”有時看來似乎有點不恰當,但是這種比方對開發(fā)學生的想象力,推理能力以及拓展思路竟達到了意想不到的效果。我是這樣做的:
我由解決問題引出乘法分配律的等式,但我沒有急于給學生灌注這叫乘法分配率,而是寫下了這樣一個式子;{姐姐+我}×媽媽=姐姐×媽媽+我×媽媽然后提問:“誰能解釋為什么我這樣寫嗎?思維活躍的學生馬上就會回答:“因為媽媽是你和姐姐共有的,所以你和姐姐都有資格和媽媽在一起!......學生們的學習興趣一下被調動起來了,他們明白了數(shù)學原來也是通俗易懂的。然后我再讓他們閱讀教材,給這個看似“不恰當”的比方定性為“乘法分配率”。歸納整合為字母算式:(a+b)×c=a×c+b×c,這時我再此讓學生展開聯(lián)想,讓他們學著老金剛怒目在自己身邊和生活中進行舉例,學生很快舉出(上衣+褲子)×人=上衣×人+褲子×人,(鉛筆+圓珠筆)×本子=鉛筆×本子+圓珠筆×本子等例子等不是十分貼切,但卻富有情趣,孩子在編例子的同時,其實已把握了乘法分配律的特征,學生就不會出現(xiàn)(a+b)×c=a×c+b的錯誤,在生動活潑的“打比方”中,既帶給了學生體驗學習的快樂,又讓我們枯燥深奧的數(shù)學概念成為形象而具體的理解形成,這種教法我在教“乘法交換律”時也用到過,我在結尾時把它總結為“左右搬家”然后講了個鋪子搬家的故事,學生們在津津樂道的故事中,在形象貼切的“打比方”中學懂了數(shù)學知識,收到了良好的效果,真正使數(shù)學課堂貼近生活。
設了這樣一個情境,“一共有25個小組參加植樹 乘法分配律在乘法的運算定律中是一個比較難乘法分配律的教學是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。對于乘法分配律的教學,我沒有把重點放在數(shù)學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。
以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,提出問題:共有多少名同學參加了這次植樹活動?通過兩種方法和算式的比較,使學生初步感知乘法分配律。
展示知識的發(fā)生過程,引導學生積極主動探究。先讓學生根據(jù)問題,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式,讓學生觀察,初步感知“乘法分配律”。然后要求學生照樣子說出幾組這樣的等式,引導學生再觀察,讓學生說明自己發(fā)現(xiàn)的規(guī)律。這樣學生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅讓學生獲得了數(shù)學基礎知識和基本技能,而且培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。
最后讓學生比較乘法交換律和結合律與分配率的最大區(qū)別,前者只在連乘的同一級運算中運用,后者是在兩級運算中運用,所以,看清題目是一級運算還是兩級運算對決定算法非常重要。這節(jié)課雖然成功引導學生發(fā)現(xiàn)了定律,但教完之后,在練習過程中還有部分學生掌握不好,在后一階段依然要加強練習,邊練習邊總結算法,使學生達到熟能生巧的程度。
乘法分配律教學反思7
《乘法分配律》是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數(shù)學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……
1、關注學生已有的知識經(jīng)驗。以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設了與生活環(huán)境、知識背景密切相關的感興趣的學習情境,喚醒了學生已有的知識經(jīng)驗,使學生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導學生積極主動探究。讓學生根據(jù)提供的問題,用不同的方法解決,引導學生觀察,讓學生說明自己發(fā)現(xiàn)的規(guī)律。不僅讓學生獲得了數(shù)學基礎知識和基本技能,而且培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。
3、出示乘法分配律的幾種不同的形式讓學生進行練習。
通過這一系列的'教學措施,一節(jié)課下來,總體感覺良好——覺得同學們掌握得還不錯。于是,我布置了讓學生們完成練習冊中《乘法分配律》這一課的習題。
當我批改練習時我傻了眼,學生的作業(yè)大多是中,少部分得良和差(我的作業(yè)批改評定標準),為什么會是這樣的結果,我進行反思,發(fā)現(xiàn)是講時,例題出示的不多,當時學生都會做了,但是對于熟練掌握這個既是重點又是難的課程的確不是那么簡單的,三種題型放在一起學生就很容易受到干擾,結果是張冠李戴,錯得讓我涕笑皆非。而為了讓學生把這個知識點掌握牢固,我整整又用了兩節(jié)課。
通過這個知識點的教學,我發(fā)現(xiàn)數(shù)學不多練是不行的。在學生理解之后,必須對其進行及時、有效的練習才可以使知識掌握的更加牢固。
乘法分配律教學反思8
乘法分配律是第三章的教學難點也是重點。這節(jié)課的設計。我是從學生的生活問題入手,利用與生活密切相關的情境圖植樹問題展開。這節(jié)課我力圖將教學生學會知識,變?yōu)橹笇W生會學知識。通過讓學生經(jīng)歷了 “ 觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納 ” 這樣一個知識形成的過程。回顧整個教學過程,這節(jié)課的亮點主要體現(xiàn)在以下幾個方面:
一、引入生活問題,激趣探究
在教學中,我為學生做好新知鋪墊,然后創(chuàng)設大量生動、具體、鮮活的生活情境,讓學生感到數(shù)學就是從身邊的生活中來的,激發(fā)學生學習的熱情。首先我創(chuàng)設情景,提出問題: “ 一共有多少名學生參加這次植樹活動? ” 。讓學生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)( 4 + 2 ) ×25=4×25 + 2×25 這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知 “ 乘法分配律 ” 。再讓學生 “ 觀察這個等式左右兩邊的不同之處 ” ,再次感知 “ 乘法分配律 ” 。同時利用情景,讓學生充分的感知 “ 乘法分配律 ” ,為后來 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供學生獨立探究的機會
我要求學生觀察得到的'兩個等式,提出 “ 你有什么發(fā)現(xiàn)? ” 。此時學生對 “ 乘法分配律 ” 已有了自己的一點點感知,我馬上要求學生模仿等式,自己再寫幾個類似的等式。使學生自己的模仿中,自然而然地完成猜測與驗證,形成比較 “ 模糊 ” 的認識。
三、為學生的學習方式的轉變創(chuàng)設了條件
為了讓 “ 改變學生的學習方式,讓學生進行探索性的學習 ” 不是一句空話。在這節(jié)課上,我抓住學生的已有感知,立刻提出 “ 觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎? ” 。這樣,給學生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗證,辨析與交流的空間,把學習的主動權力還給學生。學生的學習熱情高了,自然激起了探究的火花。學生的學習方式不再是單一的、枯燥的,整個教學過程都采用了讓學生觀察思考、自主探究、合作交流的學習方式。我想:只有改變學習方式,才能提高學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
乘法分配律教學反思9
《乘法分配律》是人教版四年級第三單元的內容,學生已經(jīng)學過了加法交換律和結合律、乘法交換律和結合律,因此總以為學生對這一部分的知識并不陌生,就簡單地設計了復習,回顧學過的運算律,再讓學生發(fā)現(xiàn)運算律在簡便計算中的運用,接著就出示了新課的例題,讓學生從例題中尋找乘法分配律的規(guī)律,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授,最后通過鞏固練習讓學生認識乘法分配律并在計算和實際生活問題中的運用。但上完課,發(fā)現(xiàn)課堂出現(xiàn)了很多的問題,學生對乘法分配律和乘法結合律的混淆。那么在教學中應該注意什么呢?
1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵。
教學時我們往往注重等式兩邊的外形特點,即a×(b+c)=a×b+a×c。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)×3=2×3+7×3是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)×3=2×3+7×3
2、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩個數(shù)的和乘以一個數(shù)或兩個積的和。在練習題中(40+4)×25與(40×4)×25這種題學生特別容易出錯。為了更好地掌握,可多進行一些對比練習,如進行題組對比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每組算式有什么特征和區(qū)別?符合什么運算定律?應用什么運算定律可以使計算簡便?為什么要這樣算?
3、讓學生進行一題多解的練習,加深對乘法結合律和乘法分配律的理解
如:125×88;101×89你能有幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8);④(100+25)×88等等。101×89①豎式計算;②(100+1)×89;③101×(100-1);④101×(80+9);⑤101×(90-1)等.對于不同解法,引導學生進行對比分析,什么時候用乘法結合律簡便?什么時候用乘法分配律簡便?力爭達到“用簡便計算法進行計算”成為學生一種自主行為,并能根據(jù)題目的.特色靈活選擇適當?shù)乃惴ǖ哪康?/p>
4、多練
針對題目多次練習。練習時注意練習量和時間的安排。剛開始可以天天練習,過段時間以后可以一兩天練習一次,再到一周練習一次,典型題型課選擇(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。
對于比較特殊的題目可以間斷性練習,對優(yōu)生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。
這樣一來,讓學生親歷觀察、歸納、猜測驗證推理等探究發(fā)現(xiàn)的全過程,使學生不僅發(fā)現(xiàn)了乘法分配律的知識的內含,而且學習了科學的探究的方法,數(shù)學思維能力也得到了發(fā)展。
乘法分配律教學反思10
義務教育課程標準實驗教科書(北京師范大學出版社)五年級下冊數(shù)學第81~82頁《分數(shù)混合運算(二)》中,關于“整數(shù)的運算律在分數(shù)的運算中同樣適用”這一教學內容,在課堂教學中,為了充分發(fā)揮學生學習的主體性和積極性,讓學生在學習新知識的過程中能把新舊知識結合起來,我在課堂教學中,主要做到如下幾點:
一、提出簡單問題,讓學生運用已學知識加以解決
在復習中,出示整數(shù)乘法的簡算練習:
25×17×4 125×32×25 53×69+47×69 101×85
通過復習,引導學生得出已學習過的整數(shù)乘法運算定律,并板書:乘法交換律:a×b=b×a
乘法結合律:a×b×c=a×(b×c)
乘法分配律:(a+b)×c=a×b+b×c
二、利用數(shù)學相關信息,引導學生主動參與數(shù)學學習活動,提高學生運算能力
《義務教育數(shù)學課程標準》指出:“運算能力主要是指能夠根據(jù)法則和運算律正確地進行運算的能力。培養(yǎng)運算能力有助于學生理解運算的算理,尋求合理簡潔的運算途徑解決問題!睋(jù)此,我在導入新課后出示如下嘗試題讓學生練習:
56×17×35 59×14+49×14
因為學生在復習中已經(jīng)熟悉了整數(shù)乘法運算定律,所以在嘗試練習中大部分學生都能大膽運用整數(shù)乘法運算定律來解決嘗試題,但也有一小部分學生運用四則混合運算順序來算出答案。我根據(jù)練習的實際情況,每道題各讓4名學生在黑板上板演(其中2名學生用簡算、2名學生按運算順序算)。然后讓學生觀察、比較、討論異同,引導學生加以概括,得到“乘法的運算定律在分數(shù)的運算中同樣適用”這一結論。此時,我再適當引導,讓學生明白:在計算中,我們學習過的加法運算律、乘法運算律等“整數(shù)的運算律在分數(shù)的'運算中同樣適用”這一教學重點;接著,再引導學生概括得出:連減的性質、連除的性質等“整數(shù)的運算性質在分數(shù)的運算中同樣適用”這一延伸的知識內容。
三、因勢利導、適時調控,努力營造師生互動、生生互動、生動活潑的課堂氛圍,形成有效的學習活動
數(shù)學教育家波利亞曾經(jīng)說過:“數(shù)學教師的首要責任是盡其一切可能,來發(fā)展學生解決問題的能力!痹谛抡n教學以后,我趁熱打鐵,在鞏固練習中出示如下練習題:
823-(23+47)517×932×3415
(58+712)×48 86×8485
上述四道題,前三道題大部分學生都能根據(jù)已學知識用運算律來解答,但對于86×8485,很多學生都認為不能用運算律來簡算,在解答過程中都用已學過的分數(shù)乘法的計算法則算出答案。于是,我讓學生討論,看誰有辦法用簡算的辦法算出這道題的答案,鼓勵學生學會獨立思考。通過幾分鐘的討論,相當一部分學生都確定這道題可用乘法分配律進行簡算,只不過在簡算時要先把86×8485改寫成(85+1)×8485,然后再用乘法分配律即可計算出答案。
乘法分配律教學反思11
“乘法分配律”的學習是在學習了乘法交換律和乘法結合律之后進行的,對于乘法分配律的理解和應用上都比前兩個運算定律更有難度,學生在新課學習和知識的應用的過程中思路還比較清晰,但是在作業(yè)的過程中出現(xiàn)的好多問題,讓人感覺孩子并沒有對定律有真正意義上的理解。如:(40+4)×25,有時,只用40×25,后面只加上4就行了,還有的把這道題目改成了連乘題,根據(jù)孩子出現(xiàn)的問題和練習中出現(xiàn)的困惑,我認真的設計的這節(jié)練習課。
第一,理清思路,,建構完整的知識體系。在本節(jié)課中,我和學生們一起回顧了乘法的幾種運算定律,比較每種運算定律的字母公式,來區(qū)分乘法交換律、乘法結合律和乘法分配律之間的外形結構特點,引導學生發(fā)現(xiàn),乘法結合律是幾個數(shù)連乘,而乘法分配律是兩數(shù)的和乘一個數(shù)或者是兩個積的和.從運算符號上我們很快就可以找到它們的不同。乘法交換律和乘法結合律都只有乘號,而乘法分配律有不同級的兩種運算符號。
第二,優(yōu)化練習題,實行精練。針對學生在乘法分配律學習后在理解上的困難,及乘法分配律在練習形式上的多變,我找出課本、課堂作業(yè)本以及一些課外輔導資料上的乘法分配律的.計算題,把他們進行概括總結,把不同類型的乘法分配律的方法進行練習,講解。讓學生對不同的乘法分配律的解決方法都進行嘗試,幫助理解,加深記憶。
第三,一題多法。例如25×44,學生在利用乘法分配律拆分其中一個數(shù)據(jù)的時候,有多種方法,有的學生把25拆成20+5,有的是拆了40+4,還有的把25×44轉化成25×4×11,這些方法都可以,讓學生分辨出每一種方法所運用的運算定律,從而加深學生對知識的認識和理解,在此基礎上,選出最佳方案。
乘法分配律的練習實在是多種多樣,變幻無窮,要想更好的掌握,關鍵還是要理解,需多練.
乘法分配律教學反思12
乘法分配律是人教版數(shù)學第三單元的內容,它是在學生已經(jīng)學習掌握了乘法交換律、結合律,并能初步應用這些定律進行一些簡便計算的基礎上進行學習的。乘法分配律是本單元的教學重點,也是本節(jié)課內容的難點,教材是按照分析題意、列式解答、講述思路、觀察比較、總結規(guī)律等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學生學習的難點。因此本節(jié)課不僅使學生學會什么是乘法分配律,更要讓學生經(jīng)歷探索規(guī)律的過程,進而培養(yǎng)學生的分析、推理、抽象、概括的.思維能力。
同時,學好乘法分配律是學生以后進行簡便計算的重要基礎,對提高學生的計算能力有著舉足輕重的作用。但要做到讓學生進行“探究、推理、自己總結規(guī)律”很難,因為上的是直播棵,為了突破難點,在備課時,我做足了功課,首先我從例題入手,把乘法分配律放在具體的情境中,結合學生已有的生活經(jīng)驗,學生發(fā)現(xiàn)解決問題策略很多,此題可以用兩種方法解答:(1)(4+2)×25;(2)4×25+2×25,通過比較,學生知道了為什么:(4+2)×25=4×25+2×25,經(jīng)歷了知識探究的過程,講完例題后,又讓學生通過發(fā)語音、課堂連麥的形式讓舉了許多這樣的例子,提高了學生學習的積極性,每個例子不僅可放在具體情境中,也可借助乘法的意義讓學生進一步理解,從而得出什么是“乘法的分配律及它的應用”,課堂取得了很好的效果。
乘法分配律教學反思13
《乘法分配律》一直是四則運算定律的一個難點,學生最容易出錯。比如38與99相乘,就容易出現(xiàn)“只把38與100相乘后再減1”的錯誤。還有的學生在計算125×48時,會出現(xiàn)“125×(6×8)=125×6+125×8“這樣的錯誤。究其原因,還是未能真正理解乘法的含義和乘法的運算定律。
在教學中,我也想了很多辦法來解決這些問題,比如讓學生背乘法分配律的含義,經(jīng)常讓學生做點這樣的.易錯題?砂l(fā)現(xiàn)效果不是很明顯,尤其是有幾個孩子,一會就忘記了。后來,我想:還是必須從理解乘法的意義中去學會乘法分配律。于是,我就在輔導這幾名學生時,要求他們說出每一個算式表示的含義,再說一說自己做錯的算式的含義,從而在對比中來發(fā)現(xiàn)、理解自己的錯誤,明白了自己錯誤的原因后,再來思考正確的解題思路,經(jīng)過幾次這樣的訓練,效果好多了。
乘法分配律教學反思14
《乘法分配律》是四年級數(shù)學下冊第三單元中的一節(jié)教學內容,一直以來的教學中,我認為這節(jié)課的教學都是一個教學難點,學生很難學好。
我認為其中的不易可以從三個方面來說:
其一,例題僅僅是分配律的一點知識,在課下的練習題中還存在不少乘法分配律類型的題(不過,這好像也是新課改后教材的表現(xiàn))。如果讓學生僅僅學會例題,可以說,你也只是學到了乘法分配律的皮毛;
其二,乘法分配律只是一種簡單的計算方法的應用,所有用乘法分配律計算的試題,用一般的方法完全都可以計算出來,也就是說,如果不用乘法分配律,學生完全可以計算出結果來,只不過不能符合簡便計算的要求罷了,問題是學生已學過一般的'方法,學生在計算時想的最多的還是一般的計算方法;
其三,本節(jié)課的教學靈活性比較大,并沒有死板板的模式可以來死記硬背,就是學生記住了定律,在運用時,運用錯了,也是很大的麻煩,從題目的分析到應用定律都需要學生的認真分析及靈活運用。
針對以上自己分析可能出現(xiàn)的問題,,確定從以下兩個方面時行教學:
第一,以書本為依托,學好基礎知識。
有一句話叫做“萬變不離其宗”。雖然課下還有多種類型題,但它們都與書上的例題有著親密的聯(lián)系,所以教學還是要以書本為依托。在教學中,我引導生通過觀察兩個不同的算式,得出乘法分配律的用字母表示數(shù):a×b+a×c=a×(b+c),在引導學生經(jīng)過練習之后,我還強調學生,要做到:a×(b+c)=a×b+a×c。用我自己的話說,就是:能走出去,還要走回來。再次經(jīng)過練習,在學生掌握差不多時,簡單變換一下樣式:(a+b)×c=a×c+b×c,走回來:a×c+b×c=(a+b)×c。如此以來,學生算是對乘法分配律有了個初步的認識,知道是怎么回事,具體的運用還差很遠,因為還有很多的類型學生并不知道。于是我就在第二節(jié)課進行了第二個方面的教學。
第二,以練習為載體,系統(tǒng)鞏固知識。
針對乘法分配律還有多種類型,例題中也沒講到的情況,我上網(wǎng)查資料,加上并時的一些認識,把乘法分配律分為五類,并對每類進行簡單的分析提示,附以相應的練習題印發(fā)給學生,讓學生進行練習。
乘法分配律教學反思15
我對教材內容、學情進行了認真的分析之后,確定了教學目標:通過小組合作探索乘法分配律的活動,進一步體驗探索規(guī)律的過程,并能用字母表示;經(jīng)歷共同探索的過程,培養(yǎng)解決實際問題和數(shù)學交流的能力;會用乘法分配律進行一些簡便計算。通過學生自主研究、小組討論、全班交流以及講學練相結合,設計相應的練習題,逐步理解抽象的乘法分配律。
通過教研組全體老師的努力,我們設計了比較合理的前置性小研究。
在本節(jié)課的教學過程中,學生通過對“前置性小研究”的探索研究,能會用兩種方法去解決同一問題,并且能講出自己的思路;能夠觀察出并說出兩道算式的特點,能夠觀察出兩道算式的結果是相同的;能夠按照算式的特點進行舉例;能夠自己說出規(guī)律,總結規(guī)律;能夠用求結果和乘法的意義去驗證這條規(guī)律的正確性、普遍性;能夠運用乘法分配律解決實際的問題,在做題的同時感受乘法分配律給計算帶來的方便。
當然,本節(jié)課的教育教學過程,也是有不足的地方。我認為:
1、教師在施教的過程中,經(jīng)常性的打斷學生的發(fā)言。其實這是很不好的習慣。課下陳靖嫣對我說:“老師,你一打斷我,我就不知道怎么說了!蔽易约阂惨庾R到了這個問題。我覺得在“生本課堂”中教師,應該有這樣一種意識,那就是“等”的`意識。等學生表達完他的所有想法之后,他們在遇到“瓶頸”的時候,老師可以經(jīng)過有智慧的引導,幫助他們度過“難過”?墒俏覀兒芏鄷r候,經(jīng)常犯的錯誤是,學生只要一有點小問題,老師馬上就出馬,這樣是極不好的做法。像本次課中,我有好幾次打斷了陳靖嫣同學的匯報,也打斷了王孟陽同學的匯報,還有好幾次打斷了同學們的交流活動。
對于這種打斷可能在心里帶著很僥幸的心理,認為我必須在規(guī)定的時間完成某些教學任務,不能讓本節(jié)課“節(jié)外生枝”?墒,這種心理違背了“生本課堂”的基本教學理念。
2、教師在引導的過程中,不能照顧到學生的想法。像:徐昊同學和李厚杰同學在課堂上,表達了自己的想法?墒俏以谑┙痰倪^程中,沒有給予足夠的重視?赡軐τ诒竟(jié)課的教學,他們的想法,是在浪費時間。可是,我的這種做法,卻不能照顧到他們的后續(xù)發(fā)展。我覺得在處理這個事件的時候,我應該既不能讓本節(jié)課“跑偏”,也不能澆滅他們的“興趣之火”。這是需要有一定的教育智慧的。
3、我覺得學生們的交流是不夠熱烈的。根本的原因是:學生們的研究不夠到位,不會提出自己的疑問,不能對自己的疑問進行探索研究。我覺得這都是老師在平時教學中,沒有給予足夠的指導的原因。
還有很多的問題,也許是我沒有意識到的。
結合本節(jié)課,關于生本課堂我有了很多的想法。
我認為真正的“生本課堂”是這樣的:
教師在教學設計、教學過程等各個環(huán)節(jié),能體現(xiàn)學生的主體地位,從細節(jié)去體現(xiàn)。也是一種和諧的教育氛圍。教師和學生可以圍繞一個問題據(jù)理力爭,也可以在一節(jié)課中,實現(xiàn)多個知識點的“串聯(lián)”,也可能好幾節(jié)課我們突破不了一個知識點的講解。教師千萬要改變原先“計件工作”的模式,我們還原教育本來的色彩。它應該是自然的,富有詩情畫意的。我們身在其中,師生應該一起去營造一種氛圍,體會教育給我們帶來的幸和充實感。
我立志讓我的課堂,成為我們幸福的源泉。
【乘法分配律教學反思】相關文章:
乘法分配律教學反思11-11
《乘法分配律》教學反思01-15
乘法分配律教學反思05-15
人教版乘法分配律教學反思11-17
乘法分配律教學反思(15篇)02-12
乘法分配律教學反思15篇06-19
《乘法分配律》教學反思15篇03-26
乘法分配律教學反思(集錦15篇)03-26
乘法分配律教學反思(集合15篇)04-21
乘法分配律教學反思實用(15篇)05-15