乘法分配律教學(xué)反思
身為一位優(yōu)秀的老師,我們要在教學(xué)中快速成長,在寫教學(xué)反思的時候可以反思自己的教學(xué)失誤,快來參考教學(xué)反思是怎么寫的吧!下面是小編為大家收集的乘法分配律教學(xué)反思,僅供參考,大家一起來看看吧。
乘法分配律教學(xué)反思1
《乘法分配律》是人教版四年級第三單元的內(nèi)容,學(xué)生已經(jīng)學(xué)過了加法交換律和結(jié)合律、乘法交換律和結(jié)合律,因此總以為學(xué)生對這一部分的知識并不陌生,就簡單地設(shè)計了復(fù)習(xí),回顧學(xué)過的運算律,再讓學(xué)生發(fā)現(xiàn)運算律在簡便計算中的運用,接著就出示了新課的例題,讓學(xué)生從例題中尋找乘法分配律的規(guī)律,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授,最后通過鞏固練習(xí)讓學(xué)生認(rèn)識乘法分配律并在計算和實際生活問題中的運用。但上完課,發(fā)現(xiàn)課堂出現(xiàn)了很多的問題,學(xué)生對乘法分配律和乘法結(jié)合律的混淆。那么在教學(xué)中應(yīng)該注意什么呢?
1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵。
教學(xué)時我們往往注重等式兩邊的外形特點,即a×(b+c)=a×b+a×c。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)×3=2×3+7×3是相等的',還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)×3=2×3+7×3
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進(jìn)行對比練習(xí)。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩個數(shù)的和乘以一個數(shù)或兩個積的和。在練習(xí)題中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出錯。為了更好地掌握,可多進(jìn)行一些對比練習(xí),如進(jìn)行題組對比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每組算式有什么特征和區(qū)別?符合什么運算定律?應(yīng)用什么運算定律可以使計算簡便?為什么要這樣算?
3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對乘法結(jié)合律和乘法分配律的理解
如:125×88;101×89你能有幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8);④(100+25)×88等等。101×89①豎式計算;②(100+1)×89;③101×(100-1);④101×(80+9);⑤101×(90-1)等.對于不同解法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達(dá)到“用簡便計算法進(jìn)行計算”成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)乃惴ǖ哪康?/p>
4、多練
針對題目多次練習(xí)。練習(xí)時注意練習(xí)量和時間的安排。剛開始可以天天練習(xí),過段時間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。
對于比較特殊的題目可以間斷性練習(xí),對優(yōu)生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。
這樣一來,讓學(xué)生親歷觀察、歸納、猜測驗證推理等探究發(fā)現(xiàn)的全過程,使學(xué)生不僅發(fā)現(xiàn)了乘法分配律的知識的內(nèi)含,而且學(xué)習(xí)了科學(xué)的探究的方法,數(shù)學(xué)思維能力也得到了發(fā)展。
乘法分配律教學(xué)反思2
師:出示教學(xué)掛圖并提問:從圖上你知道什么?
生:張阿姨買5件夾克衫和5條褲子,一共要付多少錢?
師:能自己列式解答嗎?(教師巡視,學(xué)生解答)
讓用兩種不同方法解答的學(xué)生分別板演。
師:說說65×5+45×5這種解答方法是怎樣想到的?
生:先算買夾克衫和買褲子各用多少元?
師:(65+45)×5這種方法呢?
生:先算買一套衣服用多少元?
師:比較這兩種方法,有什么不同和相同呢?
生:想的方法不同導(dǎo)致列的算式不同,但結(jié)果相同
師:結(jié)果相等的兩個算式可以用什么連接?
生:等號揭示:(65+45)×5=65×5+45×5
師:仔細(xì)觀察等號兩邊的算式,它們有什么聯(lián)系嗎?(從數(shù),運算符號思考)
生:結(jié)果相等,都有三個數(shù),5左邊出現(xiàn)了1次,右邊出現(xiàn)了兩次,左邊先加再乘,右邊先乘再加……
師:等號左邊先算什么?右邊呢?
生:等號左邊是65加45的和乘5,右邊是65乘5的積加45乘5的積。
師:你能模仿著寫出幾組這樣的算式嗎?學(xué)生試寫
學(xué)生列舉驗證,教師將學(xué)生列舉的等式寫在黑板上,并讓學(xué)生說出等式兩邊的得數(shù)。
師:還有很多同學(xué)想說,像這樣的例子舉得完嗎?
師:由此你想到些什么?
生:這里有規(guī)律。
師:我們可以用什么來表示這種普遍存在的規(guī)律呢?
生:(字母、符號、文字)
師:試著寫一寫吧
生:(a+b)×c=a×c+b×c
(△+○)×□=△×□+○×□
師:小結(jié):像這樣兩個數(shù)的和與一個數(shù)相乘,也可以用這兩個數(shù)分別與這個數(shù)相乘,再把他們的積相加,這就是乘法分配律。(指著算式說)
順著讀,(任何事物都要從正反兩面去看)反過來讀乘法分配律
反思:
乘法分配律一課是蘇教國標(biāo)版教材四年級下冊的內(nèi)容,是在學(xué)生經(jīng)過較長時間的四則運算學(xué)習(xí),對四則運算已有較多感性認(rèn)識的基礎(chǔ)上學(xué)習(xí)的。學(xué)生接觸過加法、乘法的驗算和口算等方面的知識,對此有較多的感性認(rèn)識,這是學(xué)習(xí)乘法分配律的'基礎(chǔ)。教材安排這個運算律是從學(xué)生解決熟悉的實際問題引入的,讓學(xué)生通過觀察、比較和分析,初步感受運算的規(guī)律。然后讓學(xué)生根據(jù)對運算律的初步感知,舉出更多的例子,進(jìn)一步觀察比較,發(fā)現(xiàn)規(guī)律。教材有意識地讓學(xué)生運用已有經(jīng)驗,經(jīng)歷運算律的發(fā)現(xiàn)過程,讓學(xué)生在合作與交流中對運算律地認(rèn)識由感性逐步發(fā)展到理性,合理地構(gòu)建知識。
課程標(biāo)準(zhǔn)提出“讓學(xué)生經(jīng)歷有效地探索過程”。教學(xué)中以學(xué)生為主體,激勵學(xué)生動眼、動手、動口、動腦積極探究問題,促使學(xué)生積極主動地參與“觀察——舉例——得出結(jié)論”這一數(shù)學(xué)學(xué)習(xí)全過程。學(xué)生掌握了學(xué)習(xí)方法,就等于拿到了打開知識寶庫地金鑰匙。由于乘法分配律是本課教學(xué)難點。教學(xué)中安排了三個層次,首先學(xué)生在觀察等式,初步感知等式特征的基礎(chǔ)上模仿寫等式,在模仿中逐步明晰特征。第二層次在觀察比較中概括特征,通過“由此你想到了些什么”引發(fā)學(xué)生聯(lián)想到是否具有普遍性。從而得到猜想:是不是所有的三個數(shù)都具有這樣的特征,再通過學(xué)生大量的舉例,驗證猜想,得出規(guī)律。本課從學(xué)生的學(xué)習(xí)情況來看,通過本課的學(xué)習(xí)不但掌握了乘法分配律的知識,更重要的是學(xué)會了數(shù)學(xué)方法,并產(chǎn)生運用這一數(shù)學(xué)方法進(jìn)行探索的愿望和熱情。這些數(shù)學(xué)方法是學(xué)生終身學(xué)習(xí)必備的能力。
乘法分配律教學(xué)反思3
乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。故而,對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達(dá)上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進(jìn)行觀察、比較和歸納,大膽提出自己的猜想并舉例進(jìn)行驗證……
1、關(guān)注學(xué)生已有的知識經(jīng)驗。以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境――為參加“陽光伙伴”的32 名運動員購買統(tǒng)一服裝。通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗,使學(xué)生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究。先讓學(xué)生根據(jù)提供的`問題,用不同的方法解決,從而發(fā)現(xiàn)(35+25 )×32=35 ×32+25 ×32 這個等式,讓學(xué)生觀察,初步感知“乘法分配律”。再根據(jù)“老師還有其他選擇嗎”?這一問題,再次引出(35+25 )×32=35 ×32+25 ×32 ,最后,要求學(xué)生照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。
3、教完之后,感覺在練習(xí)的設(shè)計上,還太拘禮與課本,雖然引導(dǎo)學(xué)生發(fā)現(xiàn)了定律,但沒有相配套的練習(xí)使學(xué)生對所學(xué)知識加以鞏固、應(yīng)用。對學(xué)生掌握知識的情況不能及時反饋,對如何用活、用好教材還需進(jìn)行進(jìn)一步的思考。
乘法分配律教學(xué)反思4
一、測試訪談情況
我把“12×(■+■)×20”這道題在六年級學(xué)生還未進(jìn)入畢業(yè)總復(fù)習(xí)前進(jìn)行測試,可測試結(jié)果還是出乎所料。在一個班52名學(xué)生中有6人答案正確,其中只有1人正確地應(yīng)用了乘法分配律簡算方法,即12×(■+■)×20=12×■×20+ 12×■×20=100+12=112,還有3人想到應(yīng)用乘法分配律來簡算,可是只把括號外的一個數(shù)分別與括號內(nèi)的兩個分?jǐn)?shù)先相乘,再與括號外的另一個數(shù)相乘,即12×(■+■)×20=(12×■+12×■)×20=■×20=112,另外2人沒用簡算,而是先把括號里的■+■通分合并變成一個數(shù)■后,再與括號外的兩個數(shù)相乘,即12×■×20=112。在測試中12×(■+■)×20=12×■+■×20=5+1=6這樣誤用“乘法結(jié)合律”來簡算的學(xué)生有39人,占全班人數(shù)的75%。上述簡算錯誤的學(xué)生說:“我們只看到題目中括號內(nèi)兩個分?jǐn)?shù)的分母正好與括號外兩個整數(shù)成倍數(shù)關(guān)系能直接約分,至于括號內(nèi)兩個分?jǐn)?shù)相加(應(yīng)用乘法分配律),括號內(nèi)兩個分?jǐn)?shù)相乘(應(yīng)用乘法結(jié)合律)就沒有注意了。 ”但還有7人錯用乘法分配律來簡算,把括號外的兩個數(shù)都分別與括號內(nèi)兩個分?jǐn)?shù)相乘而造成計算錯誤,即12×(■+■)×20=12×■+12×■+20×■+20×■。
二、錯誤原因分析
1.學(xué)生受乘法結(jié)合律運算的負(fù)遷移影響。
小學(xué)數(shù)學(xué)教材是按學(xué)生的認(rèn)知規(guī)律編寫的,從整數(shù)乘法交換律、結(jié)合律、分配律拓展到小數(shù),再延伸到分?jǐn)?shù)。這些“乘法運算定律”在分?jǐn)?shù)的四則混合運算過程中要讓學(xué)生分辨并靈活運用是有困難的。從調(diào)查中,我了解到多數(shù)學(xué)生受乘法結(jié)合律的影響,看到算式12×(■+■)×20中括號內(nèi)兩個分?jǐn)?shù)分母與括號外兩個整數(shù)相同就直接去約分了,對于括號內(nèi)的兩個分?jǐn)?shù)是相加還是相乘就沒有注意了,這樣就造成誤用了“乘法分配律”。計算錯誤原因有:①學(xué)生對定律理解不透徹。學(xué)生在中年級對乘法結(jié)合律“三個數(shù)相乘,先把前兩個數(shù)相乘,再和第三個數(shù)相乘;或先把后兩個數(shù)相乘,再和第一個數(shù)相乘,積不變!边@一定律中的“三個數(shù)”與乘法分配律中的“三個數(shù)”,究竟是怎樣運算才簡便而混淆了。因此,教師必須講清算理,舉些實例讓學(xué)生真正理解并加以辨別達(dá)到合理靈活的運算。②學(xué)生對計算審題不認(rèn)真:教學(xué)時教師在講清算理的同時,更要強(qiáng)調(diào)學(xué)生在計算前必須注意審題——不僅要觀察題目中的數(shù)據(jù)情況,還要注意看題中的運算符號。能運用乘法結(jié)合律的算式一定是幾個數(shù)連乘的,而能運用乘法分配律的算式中一定是括號內(nèi)的幾個分?jǐn)?shù)是相加或相減。為了避免學(xué)生出現(xiàn)上述12×(■+■)×20=12×■+■×20=5+1=6的錯誤,關(guān)鍵的問題是要看清楚括號內(nèi)的幾個分?jǐn)?shù)是相加(減),還是相乘,這樣就可確定是選用哪個運算定律。為防止和糾正上述錯誤出現(xiàn),教師在教學(xué)中除了講清算理外還得出一些對比性練習(xí)。如:25×4+8×125與25×4×8×125,12×■+■×20與12×■×■×20,12×20×(■×■)與12×20×(■+■),12×(■×■)×20與12×(■+■)×20等辨析題來幫助學(xué)生分辨理清。
2.學(xué)生受乘法分配律運算的'思維定勢影響。
學(xué)生從中年級開始學(xué)習(xí)了“乘法分配律”后,就一直伴隨到高年級,這一運算定律在“整數(shù)—小數(shù)—分?jǐn)?shù)”四則混合運算的學(xué)習(xí)中不斷出現(xiàn)而被廣泛應(yīng)用。當(dāng)學(xué)生剛開始接觸“乘法分配律”時,教材中只出現(xiàn)類似(a+b)×c=ac+bc或c×(a-b)=ac-bc,在整數(shù)范圍內(nèi)的應(yīng)用,此時學(xué)生用得得心應(yīng)手,不會出現(xiàn)錯誤,只見過上述“兩個數(shù)的和(差)同一個數(shù)相乘,等于把兩個數(shù)分別同這個數(shù)相乘,再把兩個積加(減)起來,結(jié)果不變”。這同時也就在學(xué)生頭腦中留下了根深蒂固的印象。當(dāng)“乘法分配律”推廣拓展到高年級分?jǐn)?shù)四則混合運算時題型不再是那么“規(guī)矩”,在乘法分配律的簡算題中有時括號外不只是一個數(shù)而是與幾個數(shù)相乘了。這時學(xué)生更加關(guān)注的是“約分”,對類似“a×(■+■)×c”題型,學(xué)生借助乘法分配律的慣性思維自然而然地遷移出“12×(■+■)×20=12×■+■×20=5+1=6”。至于為什么“括號內(nèi)兩個數(shù)的和(差)同括號外的幾個數(shù)都要分別相乘?”中年級教材尚未見過此題型。這就增加了學(xué)生根據(jù)a×(b+c)=ab+ac遷移出a×(■+■)×b = a×■+ ■×b可能性。
乘法分配律教學(xué)反思5
乘法分配律是第三章的教學(xué)難點也是重點。這節(jié)課的設(shè)計。我是從學(xué)生的生活問題入手,利用與生活密切相關(guān)的情境圖植樹問題展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識。通過讓學(xué)生經(jīng)歷了 “ 觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納 ” 這樣一個知識形成的過程;仡櫿麄教學(xué)過程,這節(jié)課的亮點主要體現(xiàn)在以下幾個方面:
一、引入生活問題,激趣探究
在教學(xué)中,我為學(xué)生做好新知鋪墊,然后創(chuàng)設(shè)大量生動、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。首先我創(chuàng)設(shè)情景,提出問題: “ 一共有多少名學(xué)生參加這次植樹活動? ” 。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)( 4 + 2 ) ×25=4×25 + 2×25 這個等式。然后請學(xué)生觀察,這個等式兩邊的運算順序,使學(xué)生初步感知 “ 乘法分配律 ” 。再讓學(xué)生 “ 觀察這個等式左右兩邊的不同之處 ” ,再次感知 “ 乘法分配律 ” 。同時利用情景,讓學(xué)生充分的感知 “ 乘法分配律 ” ,為后來 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供學(xué)生獨立探究的機(jī)會
我要求學(xué)生觀察得到的`兩個等式,提出 “ 你有什么發(fā)現(xiàn)? ” 。此時學(xué)生對 “ 乘法分配律 ” 已有了自己的一點點感知,我馬上要求學(xué)生模仿等式,自己再寫幾個類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗證,形成比較 “ 模糊 ” 的認(rèn)識。
三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件
為了讓 “ 改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí) ” 不是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出 “ 觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎? ” 。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗證,辨析與交流的空間,把學(xué)習(xí)的主動權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
乘法分配律教學(xué)反思6
《乘法分配律的運用》教學(xué)設(shè)計及反思
教學(xué)目標(biāo)
(一)使學(xué)生學(xué)會用乘法分配律進(jìn)行簡算,提高計算能力.
(二)培養(yǎng)學(xué)生靈活運用乘法運算定律進(jìn)行計算的習(xí)慣.
教學(xué)重點和難點
能比較熟練地應(yīng)用運算定律進(jìn)行簡算是教學(xué)的重點;反向應(yīng)用乘法分配律是學(xué)習(xí)的難點. 教學(xué)過程設(shè)計
(一)復(fù)習(xí)準(zhǔn)備
1.口算:
(二)學(xué)習(xí)新課
我們已經(jīng)學(xué)過乘法分配律,今天繼續(xù)研究怎樣應(yīng)用乘法分配律使計算簡便.(板書:乘法分配律的應(yīng)用)
1.創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)積極性.
出示102×( ).
請同學(xué)任意填上一個兩位數(shù),老師可以迅速說出它的得數(shù),而不用筆算.
2.教學(xué)例6:用簡便方法計算.
(1)計算102×43.
這是一道兩位數(shù)乘三位數(shù)的乘法,用筆算比較麻煩.想一想,能否把算式改成乘法分配律的形式,然后應(yīng)用運算定律進(jìn)行簡算?
經(jīng)過討論后,可能出現(xiàn)兩種情況:一種是把原式改寫為(100+2)×43,然后按乘法分配律進(jìn)行計算;一種是把原式改寫成102×(40+3).不要簡單的否定,可以讓學(xué)生用兩種方法都做一
做,對比一下,找出哪種方法簡便.
在此基礎(chǔ)上引導(dǎo)學(xué)生觀察這類題目的特點,以及怎樣應(yīng)用乘法分配律,從而使學(xué)生明確:“兩個數(shù)相乘,把其中一個比較接近整十、整百、整千的數(shù)改寫成一個整十、整百、整千的數(shù)與一個數(shù)的和,再應(yīng)用乘法分配律可以使計算簡便.
(2)計算102×24.
訂正時說明怎樣簡算的?根據(jù)是什么.
(3)計算9×37+9×63.
啟發(fā)提問:
①這類題目的結(jié)構(gòu)形式是怎樣的'?有什么特點?
、诟鶕(jù)乘法分配律,可以把原式改寫成什么形式?這樣算為什么簡便?
在學(xué)生充分討論的基礎(chǔ)上,師板書:
提問:這題能簡算嗎?什么地方錯了?應(yīng)怎樣改?
啟發(fā)學(xué)生明確:題里兩個乘式?jīng)]有相同的因數(shù).應(yīng)該有一個相同的因數(shù),另外兩個因數(shù)加起來應(yīng)是能湊成整十、整百、整千的數(shù).
2.根據(jù)乘法分配律把相等的式子用“=”連接起來.
討論:2,3兩題為什么不相等?要使等號兩邊式子相等、符合乘法分配律的形式,應(yīng)該改哪個地方?
在討論基礎(chǔ)上得出:
第2題,如果左邊算式不變,右邊算式應(yīng)改為35×12+45×12,使兩個加數(shù)分別與同一個數(shù)相乘;如果右邊算式不變,兩個積里有相同的因數(shù)45,把相同的因數(shù)提到括號外面,兩個不同的因數(shù)就是兩個加數(shù),改為(35+12)×45.
第3題右邊兩個積里相同的因數(shù)是4,不同的因數(shù)是11和25,應(yīng)改為(11+25)×4.因此
要特別注意:括號里的每一個加數(shù)都要同括號外面的數(shù)相乘;反過來,必須是兩個積里有相同的因數(shù),才能把相同的因數(shù)提到括號外面.而三個數(shù)連乘則是可以改變運算順序,它是乘法結(jié)合律.必須要掌握這兩個運算定律的區(qū)別.
(四)作業(yè)
練習(xí)十四第5~10題.
教學(xué)反思:本節(jié)課從學(xué)生實際出發(fā),創(chuàng)設(shè)了具體的生活情境,引導(dǎo)學(xué)生開展觀察、猜想、舉例驗證、交流等活動,從激活學(xué)生已有的知識經(jīng)驗和探究欲望入手,引導(dǎo)學(xué)生主動參與數(shù)學(xué)的學(xué)習(xí)過程,從而發(fā)展學(xué)生數(shù)學(xué)思維數(shù)學(xué)能力,在學(xué)習(xí)過程中學(xué)會學(xué)習(xí),學(xué)會與人交流合作。新理念還體現(xiàn)不夠,學(xué)生的積極性沒有充分調(diào)動起來。
乘法分配律教學(xué)反思7
乘法分配律運算法則與之前學(xué)生學(xué)的“交換律與結(jié)合律”相比,難度要高一個層次。盡管在周末作業(yè)中設(shè)計了導(dǎo)學(xué),但多數(shù)學(xué)生都反映“自學(xué)有困難”,按照導(dǎo)學(xué)引導(dǎo)也沒能完全弄懂“分配律”的意義。
其實分配律在筆算乘法中已有運用,但這節(jié)課后,我便以未用學(xué)生熟知的筆算入手而后悔著。其實在三年級學(xué)乘法筆算時,先用第二個因數(shù)的十位乘第一個因數(shù),再用第二個因數(shù)的個位乘第一個因數(shù),最后將兩次乘積相加,運用的就是乘法分配律。可能事先我也是擔(dān)心學(xué)生們的現(xiàn)實情況:這樣的入手方式不太吸引人,比較枯燥,吸引不了學(xué)生,又擔(dān)憂是否會將學(xué)生原本認(rèn)為難的'東西與已會的東西混淆,反而將已有基礎(chǔ)丟失。
于是,摒棄這一入手方式,并果斷放棄學(xué)生們也不太感興趣的數(shù)形結(jié)合,我從學(xué)生理解難點“為什么可以分開又相加”,用“3×a+5×a”開啟他們思維的大門,讓他們由淺入深,明確3個a加5個a表示8個a,為后面的理解作鋪墊。接下來,我設(shè)置了真實的班級情境——植樹節(jié),讓孩子們在主題圖上看到了自己忙碌的身影,并提議“明年植樹節(jié)每班增加2名同學(xué)”,并引導(dǎo)他們提問“明年植樹節(jié)一共有多少同學(xué)參加”,同學(xué)們興致勃勃,用了兩種方法解決了問題,并共同分析了兩種不同的方法所表示的都是明年參加植樹的人的總數(shù),從而再對比、總結(jié)規(guī)律,進(jìn)而進(jìn)行分層練習(xí),讓他們的學(xué)習(xí)不重復(fù)且不斷有挑戰(zhàn)。
整堂課上下來,感覺孩子們很投入,也能在回顧對比中運用分配律,只是計算還不太熟練,需要通過更多的練習(xí)來鞏固與加強(qiáng)對分配律的理解。同時,還有部分同學(xué)聽得懂,過后卻是一知半解中,也需要在練習(xí)中過渡并消化新知。
乘法分配律教學(xué)反思8
這兩天學(xué)習(xí)乘法分配律,孩子們的普遍感覺是比乘法的交換律和結(jié)合律應(yīng)用起來難一些。作業(yè)中的錯誤也很多,主要錯在一下幾點:
1、78×(100+5)
=78×100+5…………這種錯誤在于學(xué)生沒有教好的理解
乘法分配律:括號外面的數(shù)要分別乘括號內(nèi)的兩個數(shù),再把兩個積相加。
2、85×99+85
=85×(99+85)…………這種錯誤的原因在于個別孩子
對式子中的數(shù)據(jù)理解不好,不明白加號后面的
85表示的是1個85,可以看成85×1。
3、104×25
=(100+4)×25
=104×25…………這種錯誤的原因在于有的孩子對乘法分配律的引用不熟練,變式之后又按照順序進(jìn)行計算,回到了原式。
4、76×54+76×47-76
=76×(54+47)-76…………有這種做法的孩子屬于對乘法分配律的應(yīng)用不夠靈活,當(dāng)遇到部分積較多的時候,不能較好的應(yīng)用分配律進(jìn)行簡便算。
5、25×32×125
=(25×4)+(8×125)…………個別學(xué)生在做題時有一種慣性,學(xué)完乘法分配律之后,所有的題目都用分配律進(jìn)行計算,不能靈活的選用運算律進(jìn)行簡便計算。
綜合學(xué)生出現(xiàn)的錯誤之處,可見大部分孩子對運算律能夠較
好的理解,只是在應(yīng)用時不能夠靈活的應(yīng)用。直接應(yīng)用規(guī)律進(jìn)行簡便算的`能準(zhǔn)確理解,而需要變式的題目則不能較好的應(yīng)用,也有個別孩子因為理解不清而不會應(yīng)用。根據(jù)學(xué)生的情況,我采用相應(yīng)的措施,以便讓孩子們真正理解,靈活應(yīng)用。
一、個別指導(dǎo)。
對分配律不理解的孩子,我進(jìn)行個別的指導(dǎo)。具體是舉一些相關(guān)的實際問題,讓孩子用兩種不同的方法進(jìn)行解題,在解題、比較的基礎(chǔ)上理解兩部分積表示的意義,理解括號外的數(shù)要分別乘括號內(nèi)兩個數(shù)的道理,這樣借助具體事例,形象的進(jìn)行理解、概括,有助于學(xué)生對乘法分配律的掌握。
二、對比練習(xí)。
針對有的孩子把分配律和結(jié)合律混淆的情況,我設(shè)計針對性的練習(xí),讓孩子在練習(xí)中記性比較、分析,從而掌握。如:
25×3×17×4 25×3+17×25
比較兩個算式的不同之處,說說算是中分別有什么運算,運用什么運算律才能簡便計算,這樣在比較的過程中學(xué)生能夠慢慢區(qū)分乘法結(jié)合律與乘法分配律的不同,繼而再靈活應(yīng)用規(guī)律進(jìn)行計算。
三、針對練習(xí)。
針對學(xué)生不能靈活應(yīng)用規(guī)律進(jìn)行計算的問題,我設(shè)計針對性的練習(xí),讓孩子在練習(xí)中說說自己的想法,比一比怎么計算更加簡便,這樣在比較、練習(xí)的過程中進(jìn)一步掌握簡便計算的方法。
如:125×48
因為剛學(xué)過乘法分配律,學(xué)生在計算125×48時,也應(yīng)用分配律:125×40+125×8,針對這樣的情況,我讓學(xué)生再想一想還有沒有其它簡便計算的方法,引導(dǎo)學(xué)生用乘法結(jié)合律進(jìn)行簡便計算:125×8×6,再比一比:哪種方法更簡便?這樣在比較的過程中引導(dǎo)學(xué)生體會:用簡便方法進(jìn)行計算時,一定要先觀察題目中各個數(shù)的特點,根據(jù)題目的特點選擇合適的運算律進(jìn)行簡便計算,這樣才能保證計算的簡便與正確。
通過對孩子錯因的分析與相應(yīng)的指導(dǎo)、練習(xí),孩子們對乘法的運算律理解掌握也越來越好,作業(yè)的錯誤明顯減少。看來,只要我們善于分析、引導(dǎo),只要我們對孩子有耐心、有信心,孩子們就一定能夠?qū)W會、學(xué)好!
乘法分配律教學(xué)反思9
小學(xué)階段的“簡便計算”是“數(shù)的運算”的重要組成部分。《整數(shù)運算定律應(yīng)用到小數(shù)》是建立在學(xué)生已經(jīng)掌握整數(shù)運算定律、熟練計算整數(shù)簡便計算的基礎(chǔ)上進(jìn)行教學(xué)的。教學(xué)后,一些學(xué)生的作業(yè)出現(xiàn)了不同類型的錯誤。仔細(xì)分析,其中有許多值得我們?nèi)シ此肌?/p>
一、出現(xiàn)的問題
案例典型錯題:1.25×3.2
生1:1.25×3.2=1.25×(3+0.2)=1.25×3+0.2=3.75+2=5. 75
生2:1.25×3.2=1.25×(4×0.8)=(1.25×4)×(1.25×0.8)= 5×0.1=0.5
分析從這些問題中不難發(fā)現(xiàn)學(xué)生對運算定律的理解存在著一些不足。生1和生2混淆了乘法分配律和乘法結(jié)合律。到底在什么樣的算式該用乘法結(jié)合律或用乘法分配律,他們并不能肯定,有的時候通常是靠“蒙”。
反思在一些學(xué)生的知識結(jié)構(gòu)中,運算定律只是簡單的知識儲備,而在應(yīng)用運算定律進(jìn)行靈活計算時則缺乏足夠的自覺。究其原因,跟平時乘法運算定律的教學(xué)脫不了關(guān)系。
1.教學(xué)觀念重技能傳授,輕算理剖析。簡便計算的教學(xué),教師往往過分偏重于簡單模式化的技能訓(xùn)練,而忽視運算定律的算理分析,致使部分學(xué)生死記硬背、機(jī)械套用運算定律。這樣的教學(xué)過程,老師強(qiáng)調(diào)從計算入手,得出乘法分配律,但是學(xué)生并不知道為什么會成立乘法分配律。學(xué)生只關(guān)注到乘法分配律應(yīng)用到算式中的簡便功能,卻忽視了乘法分配律的意義分析,不利于學(xué)生今后對知識的運用。
2.教學(xué)方法重記憶積累,輕意義理解。教學(xué)過程中常會出現(xiàn)這些現(xiàn)象:教師讓學(xué)生背誦運算定律的公式,但是對算理卻不作要求。當(dāng)學(xué)生出現(xiàn)混淆運算定律的時候,教師卻簡單地從公式入手,告訴學(xué)生括號里是乘號時不能運用乘法分配律,只能當(dāng)括號里是加法或減法時才能用乘法分配律。這些提醒也許在一定的時間內(nèi)會起到作用,但學(xué)生終究缺乏對運算定律的真正理解。此時應(yīng)從乘法結(jié)合律和乘法分配律的意義入手,通過具體的情境讓學(xué)生進(jìn)行理解,也可以讓學(xué)生對這兩種運算定律進(jìn)行比較,充分地理解乘法結(jié)合律及乘法分配律的意義,自主建構(gòu)起知識體系。
二、教學(xué)中應(yīng)注意的事項
1.掌握計算方法的學(xué)習(xí)起點。對于乘法分配律,其實早在之前的學(xué)習(xí)中就有接觸,只是我們的教學(xué)中沒能單獨把它提出來轉(zhuǎn)化為學(xué)生的認(rèn)識。如口算兩位數(shù)乘一位數(shù)中的“13×2=?”時,大部分學(xué)生都會計算。而且當(dāng)時的方法就是先算個位上的3乘2等于6,再算十位上的.1乘2等于20,20加6得26。如果把它的口算過程寫下來就是:13×2=10×2+3×2=20+6=26。學(xué)生能夠理解題目的意圖是將13分解成10和3的和。假如能把一個數(shù)分解成兩個數(shù)的和,同樣也能分解成兩個數(shù)的差、兩個數(shù)的積。這些題目能幫助我們解決類似三位數(shù)乘兩位數(shù)的簡便計算。準(zhǔn)確把握學(xué)生的學(xué)習(xí)起點,架構(gòu)起新知識和舊知識的橋梁,就為理解乘法分配律奠定了基礎(chǔ)。
2.重現(xiàn)運算定律的意義背景。乘法分配律是一種抽象的數(shù)學(xué)模型,它與現(xiàn)實生活有著密切的聯(lián)系。在小學(xué)階段,大多能找到與之完全相符的生活原型。教材在內(nèi)容呈現(xiàn)上提供了很多豐富的生活素材,這不僅有利于學(xué)生自助抽象構(gòu)建乘法分配律模型,也為豐富模型內(nèi)涵提供了認(rèn)知的有利條件。
乘法分配律教學(xué)反思10
《乘法分配律》是四年級第七單元的內(nèi)容,在此之前,學(xué)生上個學(xué)期已經(jīng)學(xué)過了加法交換律和結(jié)合律、乘法交換律和結(jié)合律,同時這個學(xué)期第四單元混合運算中也運用了學(xué)過的運算律進(jìn)行簡便的計算,上課之前,我以為學(xué)生對這一部分的知識并不陌生,所以就簡單地設(shè)計了復(fù)習(xí),回顧學(xué)過的運算律,再讓學(xué)生發(fā)現(xiàn)運算律在簡便計算中的運用,接著就出示了上課的例題,讓學(xué)生從例題中尋找乘法分配律的影子,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授。通過鞏固練習(xí)讓學(xué)生認(rèn)識乘法分配律在計算和實際生活問題中的運用。上課之前,我以為學(xué)生會跟著我的思路走,會很順利的上完整節(jié)課。但上完課,我發(fā)現(xiàn)我自己的課堂出現(xiàn)了很多的問題,總結(jié)了一下,我感覺自己在很多方面做得很不到位。
開始的時候,學(xué)生回顧運算律的時候出現(xiàn)了小的問題,讓我有一點束手無策,導(dǎo)致后面的復(fù)習(xí)題忘記出示,課堂環(huán)節(jié)被遺漏。
教學(xué)新課的時候,學(xué)生的列式不是我想要的算式的形式,我就直接寫出我想要的算式的形式了,其實這個時候可以用乘法交換律變成我想要的形式,同時,我也在想,知識應(yīng)該是靈活的,我也應(yīng)該寫出學(xué)生說出的那種形式,因為這是學(xué)生自己列出來的式子,他自己肯定能理解的,但課上我的做法就有點急于求成,有點生搬硬套了。
小組討論的時候也出現(xiàn)了很多的問題,本來我認(rèn)為這節(jié)課學(xué)生應(yīng)該很快地發(fā)現(xiàn)等式兩邊的特點的,也能很快地說出它們的共同點的,但上課的時候,小組討論中我發(fā)現(xiàn),學(xué)生根本不知道該如何發(fā)現(xiàn)這些算式的共同點,即使有些同學(xué)發(fā)現(xiàn)了一些特點也不知道該如何表達(dá)出來,課后反思了,我發(fā)現(xiàn)自己的問題設(shè)計的不好,學(xué)生不能明白地知道該從哪里入手,是比較數(shù)字上面的關(guān)系,還是觀察式子上的關(guān)系,還是看符號上的關(guān)系,所以導(dǎo)致學(xué)生不知道該怎么說,還有一點重要的原因是我在討論之前比較例題中的等式的時候沒有清楚地講到讓學(xué)生觀察等式的運算順序,導(dǎo)致學(xué)生不會說。另一方面,對于將等式抽象成一個字母表示的式子本身不是什么難事,但還要講出抽象的過程,對于四年級的.學(xué)生有一點難度,學(xué)生能感覺出來就是這樣寫,但說的有理有據(jù)真的很困難。所以在我們的教學(xué)中,我們要考慮到學(xué)生的認(rèn)知水平,讓學(xué)生說出他應(yīng)該有的想法就很好了,以后的教學(xué)中我們應(yīng)盡量讓學(xué)生進(jìn)行小組討論說出自己的想法,同時也要注意小組討論的程度問題,提出適合學(xué)生的、有效的問題是很有必要的。
練習(xí)中,要更多地關(guān)注學(xué)生的能力發(fā)展,要讓學(xué)生說出自己的想法,把每一題的設(shè)計意圖理解清楚,根據(jù)題意正確地進(jìn)行計算,并掌握做題的方法。
一節(jié)課下來發(fā)現(xiàn)自己出現(xiàn)了很多很多的問題,希望在以后的教學(xué)中能慢慢地減少這樣問題的出現(xiàn)。
乘法分配律教學(xué)反思11
—乘法分配律教學(xué)設(shè)計與反思
設(shè)計說明
當(dāng)我給學(xué)生講到練習(xí)四第七題的時候,覺得這道題目可以開發(fā)一下用來上乘法分配律,讓學(xué)生自己制作兩個長不一樣,寬一樣的長方形,通過動手操作來獲得求面積和的方法,自然的引出乘法分配律。然后看了下這節(jié)課的課后練習(xí),里面有乘法分配律的逆向運用的題目,在其后56頁的簡便運算中也能用到逆向運用的知識,于是就把這個運用單獨列出來作為一個知識層次,聯(lián)想到我們以前還學(xué)習(xí)過兩數(shù)之和乘另一個數(shù)等于這兩個數(shù)分別去乘第三個數(shù)再想減的知識,于是就去習(xí)題中找有沒有類似的題目,在55頁第五題中求四年級比五年級多多少人時,如果用乘法分配律的延伸知識可以使計算簡便,又看到練習(xí)五的三、四兩題,就必須要知道這個知識才好解決,于是就把乘法分配律的延伸作為第三個層次的教學(xué)了,按照這個思路設(shè)計了這節(jié)課,實際上下來的效果不錯,既調(diào)動了學(xué)生的學(xué)習(xí)熱情和主動性,又培養(yǎng)了學(xué)生自主探索,發(fā)現(xiàn)并總結(jié)規(guī)律的能力。 教學(xué)設(shè)計
教學(xué)內(nèi)容
蘇教版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》四年級(下冊)第54~55頁。 教學(xué)目標(biāo)
1、學(xué)生在解決實際問題的過程中發(fā)現(xiàn)并理解乘法分配律,并能運用乘法分配律使一些運算簡便。
2、學(xué)生在發(fā)現(xiàn)規(guī)律的過程中,發(fā)展比較、分析、抽象和概括能力,增強(qiáng)用符號表
達(dá)數(shù)學(xué)規(guī)律的意識,進(jìn)一步體會數(shù)學(xué)與生活的聯(lián)系。
3、學(xué)生能聯(lián)系實際,主動參與探索、發(fā)現(xiàn)和概括規(guī)律的學(xué)習(xí)活動,感受數(shù)學(xué)規(guī)律的確定性和普遍適用性,獲得發(fā)現(xiàn)數(shù)學(xué)規(guī)律的愉悅感和成功感,增強(qiáng)學(xué)習(xí)的興趣和自信。
教學(xué)過程
一:創(chuàng)設(shè)情境導(dǎo)入
提問:長方形的面積怎樣求?
指明回答
這里有長分別是10厘米和6厘米,寬都是4厘米的兩個長方形紙片,請同學(xué)們自己動手把它們組成一個新的長方形。(課件出示題目)
學(xué)生動手操作
。ㄕn件出示兩個長方形組合的動畫)
二:自主探索,交流合作
1、交流算法,初步感知
提問:請同學(xué)們自己求一下新長方形的面積。
教師巡視,觀察學(xué)生不同的解法
反饋:請學(xué)生說一說自己的`解法,應(yīng)當(dāng)有兩種解法,如果學(xué)生說不出來應(yīng)加以引導(dǎo)
(課件出示兩種解法)
談話:兩個算式解決的都是同一個問題,它們計算的結(jié)果也相同,能把它們寫成一個算式嗎?
學(xué)生自己寫一寫,請學(xué)生說一說,教師相機(jī)板書。
2、比較分析,深入體會
提問:算式左右兩邊有什么相同和不同之處呢?小組內(nèi)交流。
反饋交流,在學(xué)生發(fā)言的基礎(chǔ)上,教師根據(jù)情況相機(jī)引導(dǎo):等號左邊先算什么,再算什么,右邊先算什么,再算什么呢?使學(xué)生明確:等號左邊是10加6的和乘4,等號右邊是10乘4的積加6乘4的積。
設(shè)疑:是不是類似這樣的算式都具有這樣的性質(zhì)呢?學(xué)生舉例驗證。
組織交流反饋?蛇m當(dāng)?shù)倪x取一些數(shù)字很大的和很小的例子以及有乘數(shù)是0的例子等特殊情況。
3、規(guī)律符號化,揭示規(guī)律
提問:像這樣的算式,寫的完嗎?
我們可以嘗試用自己的方法去表達(dá)這個規(guī)律,同學(xué)們自己試著在小組內(nèi)寫一寫,說一說。
反饋引導(dǎo)學(xué)生用不同的方式來表達(dá)規(guī)律。
小結(jié)揭示:兩個數(shù)的和乘另一個數(shù)等于這兩個數(shù)分別乘另外的數(shù)再相加。用字母表示:(a+b)×c=a×c+b×c,(板書并課件出示)這就是我們今天要學(xué)的乘法分配律。(板書課題)
三:實踐運用,初步理解。
1、想想做做1
學(xué)生自主完成,組織交流。
第二小題教師板書,并啟發(fā)學(xué)生從算式所表示的意義角度說一說對這個算式的 理解。并在板書上用箭頭標(biāo)明左邊12出現(xiàn)了2次,右邊在括號外面的數(shù)字就是
12.并向?qū)W生介紹這可以稱作是乘法分配律的逆向運用(板書)
2、想想做做2
自主完成,組織交流。
第三小題引導(dǎo)學(xué)生從乘法意義角度去理解。并使學(xué)生明白74×1可以看做1個
74,也就是74.
第四小題要和想想做做題1的第二小題做對比。
四:拓展延伸,內(nèi)化新知
再次出示兩個長方形紙片,提問:如何比較這兩個長方形的大小
學(xué)生反饋,引導(dǎo)說出可以重疊比較。學(xué)生動手實踐
再問:那么大長方形比小長方形大的面積是那一塊?
讓學(xué)生自己動手摸一摸,課件出示重疊動畫,并把多余部分突出顯示。 提問:如何求多出來的面積呢?請同學(xué)們自己列式解答。
學(xué)生若想不到可以用大長方形面積減去小長方形的面積,教師可以適當(dāng)?shù)奶?示。
學(xué)生反饋,交流。課件出示兩種解法。
談話:這兩個算式結(jié)果相同,解決的也是同一個問題,可以把它們寫成一個算 式,課件出示并板書。
再問:這個算式左右兩邊有什么聯(lián)系,引導(dǎo)學(xué)生說出:兩個數(shù)的差乘另一個數(shù) 等于這兩個數(shù)分別與第三個數(shù)乘,再相減。
談話:這個規(guī)律用字母如何表示呢?自己試著寫寫看。
學(xué)生反饋,教師板書并課件出示。說明這個可以看做是乘法分配律的延伸。 五:解決實際問題,內(nèi)化重點難點。
想想做做題5
課件出示,學(xué)生讀題。
問題一,要求學(xué)生列出不同的算式解答,并通過討論引導(dǎo)學(xué)生適當(dāng)?shù)慕忉寖蓚 算式之間的聯(lián)系。
問題二,鼓勵學(xué)生列出不同的算式解答,并引導(dǎo)學(xué)生適當(dāng)?shù)慕忉寖蓚算式之間 的聯(lián)系,加強(qiáng)學(xué)生對
乘法分配律延伸的理解與內(nèi)化。
反思:
這節(jié)課我是分三個層次來教學(xué)。
第一個層次是乘法分配律的教學(xué),學(xué)生通過運用不同的方法求新長方形的面積來體會規(guī)律,感知規(guī)律的合理性。這個環(huán)節(jié)強(qiáng)調(diào)學(xué)生的自主探索和動手觀察能力。 第二個層次是乘法分配律的逆向運用,通過想想做做題1的第二小題的教學(xué),引導(dǎo)學(xué)生明確可以從乘法的意義角度來理解算式,并體會乘法分配律的逆向運用。
第三個層次是乘法分配律的延伸,通過讓學(xué)生動手操作,知道如何比較兩個長方形的大小,并通過動手指一指,知道多出的面積就是兩者相差的面積。在學(xué)生自己動手求解的過程中,初步的體會到諸如:(10-6)×4=10×4-6×4也有類似的規(guī)律,并嘗試寫出用字母如何表達(dá)。
最后通過解決實際問題的形式,把發(fā)現(xiàn)的規(guī)律加以運用,從2個小題的解答中初步體會乘法分配律和乘法分配律延伸的應(yīng)用。
乘法分配律教學(xué)反思12
《乘法分配律》是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。故而,對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達(dá)上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進(jìn)行觀察、比較和歸納,大膽提出自己的猜想并舉例進(jìn)行驗證……
1、關(guān)注學(xué)生已有的知識經(jīng)驗。以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的'需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境,喚醒了學(xué)生已有的知識經(jīng)驗,使學(xué)生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究。讓學(xué)生根據(jù)提供的問題,用不同的方法解決,引導(dǎo)學(xué)生觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。
3、出示乘法分配律的幾種不同的形式讓學(xué)生進(jìn)行練習(xí)。
通過這一系列的教學(xué)措施,一節(jié)課下來,總體感覺良好——覺得同學(xué)們掌握得還不錯。于是,我布置了讓學(xué)生們完成練習(xí)冊中《乘法分配律》這一課的習(xí)題。
當(dāng)我批改練習(xí)時我傻了眼,學(xué)生的作業(yè)大多是中,少部分得良和差(我的作業(yè)批改評定標(biāo)準(zhǔn)),為什么會是這樣的結(jié)果,我進(jìn)行反思,發(fā)現(xiàn)是講時,例題出示的不多,當(dāng)時學(xué)生都會做了,但是對于熟練掌握這個既是重點又是難的課程的確不是那么簡單的,三種題型放在一起學(xué)生就很容易受到干擾,結(jié)果是張冠李戴,錯得讓我涕笑皆非。而為了讓學(xué)生把這個知識點掌握牢固,我整整又用了兩節(jié)課。
通過這個知識點的教學(xué),我發(fā)現(xiàn)數(shù)學(xué)不多練是不行的。在學(xué)生理解之后,必須對其進(jìn)行及時、有效的練習(xí)才可以使知識掌握的更加牢固。
乘法分配律教學(xué)反思13
《新課程標(biāo)準(zhǔn)》把以“學(xué)生發(fā)展為本”作為新課程的基本理念。提出“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式”。然而,這些新的教學(xué)理念在實際的課堂教學(xué)中如何體現(xiàn)呢?
幾年來,我在轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式方面進(jìn)行了積極探索。下面,就“乘法分配律”一教學(xué)片斷,談?wù)勛约簩θ绾无D(zhuǎn)變學(xué)生學(xué)習(xí)方式的。
[教學(xué)片斷]
師:(出示課件)樹勛中心小學(xué)購買舞蹈服裝,每件上衣65元,每條褲子35元,購買12套衣服一共要多少元?(能用不同的方法幫助他們算算嗎?)
生:(65 35)×12=1200(元)
生:65×12 35×12=1200(元)
師:每個算式的結(jié)果都是1200元,那么這兩個算式有什么關(guān)系?
生:(65 35)×12=65×12 35×12
師:剛才我們是通過計算發(fā)現(xiàn)兩個算式相等的,大家能根據(jù)題意說說兩個算式為什么相等嗎?
。▽W(xué)生小組討論)
。ㄟ^了一會兒,有幾個同學(xué)舉起了小手,教師指名回答。)
生:我們小組認(rèn)為:我們知道一件上衣和一條褲子合起來叫一套衣服,就是65元和35元的和,買12套衣服的價錢就是12個65元和12個35元的和;每件上衣65元,12件上衣的價錢就是12個65元,每條褲子35元,12條褲子就是12個35元,合起來也是12套衣服的價錢,所以(65 35)×12=65×12 35×12。
師:哪位同學(xué)聽懂了他說的意思?請用簡單的語言說一遍。
生:12個65加12個35等于12個65與35的和。
師:請同桌互相說一遍。
師:照這樣,你能再寫出幾組這樣的等式嗎?(學(xué)生獨立思考。)
(過一會兒,一只只小手舉起來了,教師指名回答。)
生1:(15 25)×8=15×8 25×8。
生2:8×(24 40)=8×24 8×40。
生3:(12 18)×15=12×15 18×15。
……
師:同桌檢查一下,對方寫的等式兩邊是否相等?
師:同學(xué)們仔細(xì)觀察,對比上面的等式左右兩邊的式子有什么特征?你從中發(fā)現(xiàn)什么規(guī)律?小組內(nèi)的同學(xué)可以互相商量、討論。
過了5分鐘左右,舉起了幾只小手。
生1:我們小組發(fā)現(xiàn):等號左邊的式子不是兩個數(shù)的和乘一個數(shù)就是一個數(shù)乘兩個數(shù)的和,等右左邊的式子都是括號內(nèi)的兩個數(shù)與括號外的那個數(shù)相乘,最后把兩個積相加起來。
生2:我們小組從乘法的意義理解發(fā)現(xiàn):比如(15 25)×8=()×8 ()×8。因為15和25的和等于40,左邊的式子可以理解為40個8,右邊的式子可以理解為15個8加25個8一共是40個8,所以40個8等于15個8加25個8。
……
師;同學(xué)們剛才觀察非常仔細(xì),都代表本組講出了你們發(fā)現(xiàn)的規(guī)律。
師:像(65 35)×12=65×12 35×12這樣的等式,你能寫出多少個?
生:無數(shù)個。
師:你們能不能像乘法交換律和乘法結(jié)合律那樣也用一個字母式子來表示呢?
學(xué)生嘗試用字母表示乘法分配律,教師巡視。
生1:我用的字母式子是(a b)×c=a×c b×c。
生2:我用的字母式子是c×(a b)=c×a c×b。
生3:我用的和生1相同。
……
師:你們真棒!你們發(fā)現(xiàn)的“兩個數(shù)的和與一個數(shù)相乘,可以用兩個加數(shù)分別與這個數(shù)相乘,再把兩個積相加,結(jié)果不變!笔浅朔ㄟ\算中的一條定律,叫乘法分配律。乘法分配律常表示為(a b)×c=a×c b×c。
師:現(xiàn)在讓大家用上面的字母式子記住乘法分配律,你們可以嗎?
生:哈哈!這太簡單了!
教后反思:
1、關(guān)注學(xué)生已有的知識經(jīng)驗
以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境——為樹勛中心小學(xué)購買舞蹈服裝。通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗,使學(xué)生初步感知乘法分配律。讓學(xué)生始終處于主動探索知識的最佳狀態(tài),促使學(xué)生對原有知識進(jìn)行更新、深化、突破、超越。
2、提供自主探索的機(jī)會
一堂數(shù)學(xué)課可以有不同種教法,怎樣教才能在數(shù)學(xué)活動中培養(yǎng)學(xué)生
的創(chuàng)新能力呢?我覺得,最重要的是保證學(xué)生的主體地位,提供自主探索的機(jī)會。在探索乘法運算律的過程中,提出的問題有易到難,層層遞進(jìn),不僅為學(xué)生提供了自主探索的時間和空間,使學(xué)生經(jīng)歷乘法運算律的產(chǎn)生和形成過程,而且讓學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)規(guī)律與奧秘,從而激發(fā)學(xué)生對數(shù)學(xué)深層次的熱愛。
3、展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究
現(xiàn)代教育觀認(rèn)為:課堂教學(xué)不只是知識的傳授過程,更是學(xué)生的發(fā)展過程。從數(shù)學(xué)學(xué)科的特點看,學(xué)生所學(xué)的數(shù)學(xué)知識是前人思維的結(jié)果。學(xué)習(xí)這些知識,不是簡單地吸收,而必須通過自己的思維,把前人的思維結(jié)果轉(zhuǎn)化為自己的思維結(jié)果。教師的任務(wù)是引導(dǎo)和幫助學(xué)生去進(jìn)行再創(chuàng)造,而不是把現(xiàn)成的結(jié)論灌輸給學(xué)生。讓學(xué)生在探索未知領(lǐng)域的過程中,付出與前人發(fā)現(xiàn)這些知識所曾經(jīng)付出的大體相同的智力代價,從而有效地實現(xiàn)知識訓(xùn)練智力的價值。例如在“乘法分配律”教學(xué)中,我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65 35)×12=65×12 35×12這個等式,讓學(xué)生觀察,初步感知“乘法分配律。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己
發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅要讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且讓學(xué)生學(xué)習(xí)科學(xué)探究的方法,以培養(yǎng)學(xué)生
主動探究、發(fā)現(xiàn)知識的能力。
4.讓學(xué)生不斷在“反思”中學(xué)習(xí),“體驗”中學(xué)習(xí)
建構(gòu)主義強(qiáng)調(diào),學(xué)習(xí)不是簡單地讓學(xué)習(xí)者占有別人的知識,而是學(xué)習(xí)者主動地建構(gòu)自己的知識經(jīng)驗,形成自己的見解。在學(xué)習(xí)過程中學(xué)習(xí)者不僅要不斷監(jiān)視自己對知識的理解程度,判斷自己的進(jìn)展與目標(biāo)的差距,采取各種增進(jìn)和幫助思考的策略,而且還要不斷地反思自己的學(xué)習(xí)過程。由于數(shù)學(xué)對象的抽象性、數(shù)學(xué)活動的探索性決定了小學(xué)生不可能一次性地直接把握數(shù)學(xué)活動的本質(zhì),必須要經(jīng)過多次的'反復(fù)思考、深入研究和自我調(diào)整才可能洞察數(shù)學(xué)活動的本質(zhì)特征。就小學(xué)數(shù)學(xué)課堂教學(xué)而言,反思的內(nèi)容主要有:對自己的思考過程進(jìn)行反思,對解題思路、分析過程、運算過程、語言的表述進(jìn)行反思,對所涉及的數(shù)學(xué)思想方法反思等。在數(shù)學(xué)活動中,當(dāng)學(xué)生在探索過程中遇到障礙或出現(xiàn)錯誤時,教師可以提出一些針對性的、具有啟發(fā)性的問題引導(dǎo)學(xué)生主動地反思探索過程;當(dāng)數(shù)學(xué)活動結(jié)束后,要引導(dǎo)學(xué)生反思整個探索過程和所獲得結(jié)論的合理性,以獲得成功的體驗。在“乘法分配律”教學(xué)中,我先向?qū)W生我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65 35)×12=65×12 35×12這個等式,讓學(xué)生觀察,是讓學(xué)生初步感知這個規(guī)律。同時也體現(xiàn)了教學(xué)的差異性,給沒有發(fā)現(xiàn)規(guī)律的同學(xué)以再次發(fā)現(xiàn)的機(jī)會。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律,來加深學(xué)生的數(shù)學(xué)體驗。又如,學(xué)習(xí)了“乘法分配律”后,教師可讓學(xué)生反思:“乘法分配律”是怎樣總結(jié)出來的?從中你受到了什么啟發(fā)?什么知識與“乘法分配律”有聯(lián)系?學(xué)了“乘法分配律”后有什么用?這樣既豐富了學(xué)生的數(shù)學(xué)體驗,又提高了學(xué)生的“反思”的意識和能力。
本課中注意引導(dǎo)了學(xué)生在數(shù)學(xué)活動中體驗數(shù)學(xué),在數(shù)學(xué)中感悟數(shù)學(xué),實現(xiàn)了運算律的抽象化與外化運用的認(rèn)知飛躍,同時也體驗到了學(xué)習(xí)數(shù)學(xué)的樂趣。
乘法分配律教學(xué)反思14
教材分析:
乘法分配律是北師大版小學(xué)數(shù)學(xué)四年級上冊第三單元最后一節(jié)的教學(xué)內(nèi)容。本課是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進(jìn)行一些簡便計算的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。乘法分配律是本單元教學(xué)的一個重點,也是本單元內(nèi)容的難點,教材是按照發(fā)現(xiàn)問題--提出假設(shè)--舉例驗證--歸納結(jié)論等層次進(jìn)行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習(xí)的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進(jìn)而培養(yǎng)學(xué)生的'分析、推理、抽象、概括的思維能力。
1.上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了訂校服的教學(xué)情境,使學(xué)生解決非常熟悉的生活問題、
2.在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。
3.本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高?赡芘c我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。
4.以后注意,學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣
教學(xué)反思:
乘法分配律是第三單元的一個難點。在理解、掌握和運用上都有一定難度。因此如何上好這一課,讓學(xué)生真正地理解乘法分配律,并在理解的基礎(chǔ)上運用好它?我覺得要注重形式上的認(rèn)識,更要注重意義上的理解。因為單從形式上去記住乘法分配律是有局限性的,以后在運用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學(xué)生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學(xué)生都能輕松運用乘法分配律。
北師大版的教材注重學(xué)生的探索活動,在探索中讓學(xué)生自己去發(fā)現(xiàn)的規(guī)律,才能讓他們真正地理解。本課是“探索與發(fā)現(xiàn)”的第三節(jié)課了,學(xué)生已經(jīng)有了一定的探索能力。因此本課的設(shè)計完全圍繞著學(xué)生的自主活動在進(jìn)行。
總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。
在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運用時問題較多等。
乘法分配律教學(xué)反思15
乘法分配律是小學(xué)階段學(xué)生比較難理解與敘述的運算定律,但的確又非常重要、運用廣泛。在本節(jié)教學(xué)過程的設(shè)計上我采用了讓孩子通過“聯(lián)系實際、感知建模;分類整理,生成模型;發(fā)現(xiàn)規(guī)律,舉例驗證;表示規(guī)律,建構(gòu)模型;概括規(guī)律,完善模型;應(yīng)用規(guī)律,感受模型”的探索過程,完成本節(jié)的教學(xué)任務(wù)。
在教學(xué)過程中,以突破乘法分配律的教學(xué)重點和難點為切入點,對本節(jié)課知識的學(xué)習(xí)起到了舉足輕重的作用。根據(jù)自己的教學(xué)教訓(xùn),在平常的教學(xué)中,總是發(fā)現(xiàn)學(xué)生在學(xué)習(xí)完乘法分配律之后容易出現(xiàn)(a+b)×c=a×c+b的現(xiàn)象仔細(xì)研究其原因,其實是學(xué)生學(xué)的記的只是乘法分配律的外在形式,對公式只不過是表面膚淺的忘記,而沒有真正理解乘法分配律內(nèi)在的`數(shù)學(xué)意義。因此,我就打破通過觀察 發(fā)現(xiàn) 猜想 驗證 概括的傳統(tǒng)教學(xué)思路,除了在外在形式上認(rèn)識規(guī)律(教材意圖),又從乘法的意義入手,使學(xué)生進(jìn)一步從算式意義方面得出了(a+b)×c=a×b+b×c這樣確鑿無疑的結(jié)論。讓學(xué)生對乘法分配律的理解不再只是停留在外在的“形”,而是又進(jìn)入“質(zhì)”的深化。這種教學(xué)建立在學(xué)生認(rèn)知規(guī)律的基礎(chǔ)之上,實現(xiàn)了有效的建立模型突破了本節(jié)的第一個難點。從課后作業(yè)可以看出,這種教學(xué)效果明顯好于以前。
在突破本節(jié)第二個難點:乘法分配律容易跟乘法結(jié)合律混淆的現(xiàn)象時。敢于挑戰(zhàn)自我,不再泛泛地講兩個規(guī)律的區(qū)別與聯(lián)系,而采用反式教學(xué)寫出25×(4×8)=25×4+25×8的現(xiàn)象,讓學(xué)生既懂得乘法結(jié)合律和分配律的區(qū)別,又找到了乘法分配律概念的重點。
在本節(jié)課的練習(xí)設(shè)計上,力求有針對性、有坡度的知識延伸,出示擴(kuò)展型的練習(xí),對分配律的概念加以升華。
這些方面,只是我對自己原來的教學(xué)在反思與對比中覺得是對我而言較為進(jìn)步的一點點。但是,在實際的課堂操作中,整個教學(xué)過程也出現(xiàn)了許多不盡人意的地方。
比如:課堂上由于緊強(qiáng)導(dǎo)致只顧自己思路,而忘了對學(xué)生的回答或知識的恰當(dāng)與否做出及時評定。還有,恐怕在規(guī)定時間內(nèi)完不成任務(wù),而把“總結(jié)”與“拓展”放錯了位置;學(xué)生參與的積極性沒有預(yù)想中那么高,可能與我相對缺乏激勵性語言有關(guān)等等問題。
深入思考,覺得還是自己的業(yè)務(wù)不夠熟練,駕馭課堂能力低下而造成的。因此,我想:今后要從以下幾方面努力:
一、深入鉆研,在挖掘教材上下功夫。
二、多聽課,學(xué)習(xí)別人長處,多查閱資料學(xué)習(xí),提高自己的業(yè)務(wù)水平。
最重要的是更新教學(xué)理念,在教學(xué)思路的“創(chuàng)新”上狠下功夫,讓學(xué)生看到的天天都是“新”老師,甚至忘記“傳統(tǒng)”形象,這是我最高的追求目標(biāo)。
【乘法分配律教學(xué)反思】相關(guān)文章:
乘法分配律教學(xué)反思11-11
《乘法分配律》教學(xué)反思01-15
人教版乘法分配律教學(xué)反思11-17
乘法分配律教學(xué)反思(15篇)02-12
乘法分配律教學(xué)反思15篇06-19
《乘法分配律》教學(xué)反思15篇03-26