- 相關(guān)推薦
乘法分配律教師教學(xué)反思優(yōu)秀
身為一名人民教師,我們的任務(wù)之一就是課堂教學(xué),通過教學(xué)反思可以快速積累我們的教學(xué)經(jīng)驗,教學(xué)反思要怎么寫呢?下面是小編幫大家整理的乘法分配律教師教學(xué)反思優(yōu)秀,歡迎閱讀與收藏。
乘法分配律教師教學(xué)反思優(yōu)秀1
乘法分配律教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上進行的。它是學(xué)生較難理解與敘述的定律。因此我在教學(xué)中讓學(xué)生在不斷的感悟、體驗、練習(xí)中理解乘法分配律,從而達到熟練掌握的效果。
一、從學(xué)生已有生活經(jīng)驗出發(fā),通過觀察、類比、歸納、驗證、運用等方法深化和豐富對乘法分配律的認識。滲透“由特殊到一般,再由一般到特殊”的認識事物的方法,培養(yǎng)學(xué)生獨立自主、主動探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學(xué)的應(yīng)用意識。
二、在本課教學(xué)過程的設(shè)計上,我盡量想體現(xiàn)新課標的一些理念,注重從實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在體驗中學(xué)到知識。舉例:設(shè)計學(xué)校買書的情景。讓學(xué)生幫助出主意。出示:“一套故事書45元,一套科技書35元,各買3套書。一共需要多少元錢?”讓學(xué)生嘗試通過不同的'方法得出:(45+35)×3=80×3=240(元)、45×3+35×3=135+105=240(元)。此時,讓學(xué)生觀察通過計算方法得到了相同的結(jié)果,這兩個算式可用“=”連接。使之讓學(xué)生從中感受了乘法分配律的模型。從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。”用字母形式表示:(a+b)×c=a×c+b×c
本節(jié)課氣氛活躍,學(xué)生積極性高?赏ㄟ^練習(xí)發(fā)現(xiàn)孩子們掌握得并不如意,在下節(jié)課我將繼續(xù)加強練習(xí)。
乘法分配律教師教學(xué)反思優(yōu)秀2
乘法分配律是小學(xué)階段學(xué)生比較難理解與敘述的運算定律,但的確又非常重要、運用廣泛。在本節(jié)教學(xué)過程的設(shè)計上我采用了讓孩子通過“聯(lián)系實際、感知建模;分類整理,生成模型;發(fā)現(xiàn)規(guī)律,舉例驗證;表示規(guī)律,建構(gòu)模型;概括規(guī)律,完善模型;應(yīng)用規(guī)律,感受模型”的探索過程,完成本節(jié)的教學(xué)任務(wù)。
在教學(xué)過程中,以突破乘法分配律的教學(xué)重點和難點為切入點,對本節(jié)課知識的學(xué)習(xí)起到了舉足輕重的作用。根據(jù)自己的教學(xué)教訓(xùn),在平常的教學(xué)中,總是發(fā)現(xiàn)學(xué)生在學(xué)習(xí)完乘法分配律之后容易出現(xiàn)(a+b)×c=a×c+b的.現(xiàn)象仔細研究其原因,其實是學(xué)生學(xué)的記的只是乘法分配律的外在形式,對公式只不過是表面膚淺的忘記,而沒有真正理解乘法分配律內(nèi)在的數(shù)學(xué)意義。因此,我就打破通過觀察發(fā)現(xiàn)猜想驗證概括的傳統(tǒng)教學(xué)思路,除了在外在形式上認識規(guī)律(教材意圖),又從乘法的意義入手,使學(xué)生進一步從算式意義方面得出了(a+b)×c=a×b+b×c這樣確鑿無疑的結(jié)論。讓學(xué)生對乘法分配律的理解不再只是停留在外在的“形”,而是又進入“質(zhì)”的深化。這種教學(xué)建立在學(xué)生認知規(guī)律的基礎(chǔ)之上,實現(xiàn)了有效的建立模型突破了本節(jié)的第一個難點。從課后作業(yè)可以看出,這種教學(xué)效果明顯好于以前。
在突破本節(jié)第二個難點:乘法分配律容易跟乘法結(jié)合律混淆的現(xiàn)象時。敢于挑戰(zhàn)自我,不再泛泛地講兩個規(guī)律的區(qū)別與聯(lián)系,而采用反式教學(xué)寫出25×(4×8)=25×4+25×8的現(xiàn)象,讓學(xué)生既懂得乘法結(jié)合律和分配律的區(qū)別,又找到了乘法分配律概念的重點。
在本節(jié)課的練習(xí)設(shè)計上,力求有針對性、有坡度的知識延伸,出示擴展型的練習(xí),對分配律的概念加以升華。
這些方面,只是我對自己原來的教學(xué)在反思與對比中覺得是對我而言較為進步的一點點。但是,在實際的課堂操作中,整個教學(xué)過程也出現(xiàn)了許多不盡人意的地方。
比如:課堂上由于緊強導(dǎo)致只顧自己思路,而忘了對學(xué)生的回答或知識的恰當(dāng)與否做出及時評定。還有,恐怕在規(guī)定時間內(nèi)完不成任務(wù),而把“總結(jié)”與“拓展”放錯了位置;學(xué)生參與的積極性沒有預(yù)想中那么高,可能與我相對缺乏激勵性語言有關(guān)等等問題。
深入思考,覺得還是自己的業(yè)務(wù)不夠熟練,駕馭課堂能力低下而造成的。因此,我想:今后要從以下幾方面努力:
一、深入鉆研,在挖掘教材上下功夫。
二、多聽課,學(xué)習(xí)別人長處,多查閱資料學(xué)習(xí),提高自己的業(yè)務(wù)水平。
最重要的是更新教學(xué)理念,在教學(xué)思路的“創(chuàng)新”上狠下功夫,讓學(xué)生看到的天天都是“新”老師,甚至忘記“傳統(tǒng)”形象,這是我最高的追求目標。
乘法分配律教師教學(xué)反思優(yōu)秀3
乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運算定律以及乘法交換律、乘法結(jié)合律的基礎(chǔ)上進行教學(xué)的。在本單元運算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律靈活地進行簡便計算。
在課堂上,創(chuàng)設(shè)了植樹活動的情境,求一共有多少名同學(xué)參加了植樹活動。在課堂中,鼓勵學(xué)生獨立思考,能用兩種方法解答出來,然后讓學(xué)生對比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。
在學(xué)生理解了乘法分配律后,運用變式練習(xí)加深對乘法分配律意義的理解,讓學(xué)生不僅知道兩個數(shù)的。和與一個數(shù)相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數(shù)的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的'意義。
通過學(xué)習(xí),一些學(xué)生已掌握,但也有一些學(xué)生的語言敘述不熟練,雖然會背用字母表示的式子,但是不會靈活應(yīng)用。還有一些學(xué)生容易把乘法分配律和乘法結(jié)合律弄混淆。
所以在復(fù)習(xí)鞏固時,要加強乘法結(jié)合律與乘法分配律的對比,讓學(xué)生對這兩個運算定律的結(jié)構(gòu)更清晰。還要加強對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應(yīng)用運算定律進行簡便計算。
乘法分配律教師教學(xué)反思優(yōu)秀4
乘法分配律是人教版數(shù)學(xué)第三單元的內(nèi)容,它是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進行一些簡便計算的基礎(chǔ)上進行學(xué)習(xí)的。乘法分配律是本單元的教學(xué)重點,也是本節(jié)課內(nèi)容的難點,教材是按照分析題意、列式解答、講述思路、觀察比較、總結(jié)規(guī)律等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習(xí)的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。
同時,學(xué)好乘法分配律是學(xué)生以后進行簡便計算的重要基礎(chǔ),對提高學(xué)生的計算能力有著舉足輕重的作用。但要做到讓學(xué)生進行“探究、推理、自己總結(jié)規(guī)律”很難,因為上的是直播棵,為了突破難點,在備課時,我做足了功課,首先我從例題入手,把乘法分配律放在具體的情境中,結(jié)合學(xué)生已有的生活經(jīng)驗,學(xué)生發(fā)現(xiàn)解決問題策略很多,此題可以用兩種方法解答:(1)(4+2)×25;(2)4×25+2×25,通過比較,學(xué)生知道了為什么:(4+2)×25=4×25+2×25,經(jīng)歷了知識探究的過程,講完例題后,又讓學(xué)生通過發(fā)語音、課堂連麥的形式讓舉了許多這樣的.例子,提高了學(xué)生學(xué)習(xí)的積極性,每個例子不僅可放在具體情境中,也可借助乘法的意義讓學(xué)生進一步理解,從而得出什么是“乘法的分配律及它的應(yīng)用”,課堂取得了很好的效果。
乘法分配律教師教學(xué)反思優(yōu)秀5
乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運算定律,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學(xué)生而言,難度偏大,如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識要比灌輸?shù)脕淼挠浀酶。因此我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進生活,開始學(xué)習(xí)新知。在教學(xué)過程中有坡度的讓學(xué)生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設(shè)計:
一、讓學(xué)生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責(zé)挖坑和種樹,4人負責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)椋?+6)個25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學(xué)生理解帶來的困難。
通過引入解決問題讓學(xué)生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機會
借助對同一實際問題的不同解決方法讓學(xué)生體會乘法分配律的合理性。這是生活中遇到過的,學(xué)生能夠理解兩個算式表達的'意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學(xué)難點
讓學(xué)生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點。為了突破這個教學(xué)難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責(zé),人負責(zé)。一共有多少同學(xué)參加這次植樹活動?
學(xué)生主動去設(shè)計、解決,調(diào)動學(xué)生的積極性。讓學(xué)生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
當(dāng)然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
乘法分配律教學(xué)反思是必要的,所以老師們一定也要好好地去對待。不斷的反思,才可以促進不斷的進步。以上面的文章,希望與各位同行們共同進步。
乘法分配律教師教學(xué)反思優(yōu)秀6
記得曾經(jīng)在教孩子們乘法分配律的時候,總是遇到很多問題,對于乘法分配律的應(yīng)用不是很好,吐槽了很久,現(xiàn)在在教二年級的孩子的時候,我發(fā)現(xiàn)其實在二年級已經(jīng)接觸了這方面的知識,只是沒有進行歸納而已。
二年級的課本上有這樣一種題型,如:
。1)6x9=5x9+9=7x9—9=
(2)9x4=9x3+9=9x5—9=
。3)8x9=7x9+9=9x9—9=
先計算,你發(fā)現(xiàn)了什么?
我一看到這題,我就想到乘法分配律,但是在二年級剛接觸乘法,不可能就跟他們講乘法分配律。我在上練習(xí)課的時候我特意把這題拿出來講了,我想如果這里學(xué)生題解好了,對以后學(xué)習(xí)乘法分配律是有幫助的。在課堂上,我先讓學(xué)生自己完成,第一題的第2,3個算式,他們是按照運算順序來計算的.,先算乘法,再算加法或減法,這個沒有難度,而且他們根據(jù)第一題,后面的兩題都不要做,直接寫出了結(jié)果,每一題中的3個算式的結(jié)果是一樣的。我就問他們,為什么會出現(xiàn)這樣情況?學(xué)生就答不上來。我就舉了個示范,6x9是6個9相加,5x9+9是5個9相加再加1個9,5個9加1個9是6個9,6個9相加就是6x9,所以5x9+9=6x9=54。學(xué)習(xí)了乘法的意義,對于這個他們能理解,只是想不到而已,那么7x9—9=,可以交給孩子們完成,第(2)(3)題我也是讓學(xué)生來說一說。另外我還補充了一題,6x7—14,我發(fā)現(xiàn)竟然有孩子會想到14就是2個7,6個7減去2個7就是4個7,就是4x7=28。特別棒!
【乘法分配律教師教學(xué)反思優(yōu)秀】相關(guān)文章:
乘法分配律教學(xué)反思03-06
《乘法分配律》教學(xué)反思01-15
乘法分配律教學(xué)反思11-11
《乘法分配律》教學(xué)反思03-06
《乘法分配律》教學(xué)反思15篇03-26
《乘法分配律》教學(xué)反思15篇11-23
乘法分配律教學(xué)反思15篇06-19
乘法分配律教學(xué)反思(15篇)02-12