思思热免费在线视频观看|欧美国产精品一级|精品亚洲一区二区|真实国产乱子伦对白视频

<b id="w545d"><legend id="w545d"></legend></b>
<blockquote id="w545d"></blockquote>
    1. <thead id="w545d"></thead>
        首頁(yè) 申請(qǐng)書(shū)推薦信邀請(qǐng)函通知工作總結(jié)工作計(jì)劃策劃書(shū)工作報(bào)告合同演講稿職業(yè)規(guī)劃
        當(dāng)前位置:98158范文網(wǎng)>教育范文>教學(xué)反思>《勾股定理》教學(xué)反思

        《勾股定理》教學(xué)反思

        時(shí)間:2024-07-02 14:11:06 教學(xué)反思 我要投稿

        《勾股定理》教學(xué)反思

          身為一名剛到崗的人民教師,我們需要很強(qiáng)的課堂教學(xué)能力,寫(xiě)教學(xué)反思可以快速提升我們的教學(xué)能力,那要怎么寫(xiě)好教學(xué)反思呢?下面是小編整理的《勾股定理》教學(xué)反思,歡迎大家分享。

        《勾股定理》教學(xué)反思

        《勾股定理》教學(xué)反思1

          在講解勾股定理的結(jié)論時(shí),為了讓學(xué)生更好地理解和掌握勾股定理的探索過(guò)程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺(tái)演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動(dòng)。然后老師再利用電腦演示直角三角形中勾股定理的探索過(guò)程。反復(fù)演示幾遍,讓學(xué)生自己感覺(jué)并最后體會(huì)到勾股定理的結(jié)論。通過(guò)動(dòng)畫(huà)演示體會(huì)到解決問(wèn)題的方法是多種多樣,使得這課的重難點(diǎn)輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問(wèn)題的能力和創(chuàng)新能力。學(xué)生在這一過(guò)程中各顯神通,都得到了解決問(wèn)題的滿足感和自豪感。

          在教學(xué)應(yīng)用勾股定理時(shí),老是運(yùn)用公式計(jì)算,學(xué)生感覺(jué)比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問(wèn)題。同學(xué)們一看,興趣來(lái)了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開(kāi)放自由的.情況下解決了該題,同時(shí)培養(yǎng)了學(xué)生的想像力。

          最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的知識(shí)海洋中去尋找知識(shí)寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實(shí)、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會(huì)選擇、整理、重組、再用這些更廣泛的資源。這種對(duì)網(wǎng)絡(luò)資源的重新組織,使學(xué)生對(duì)知識(shí)的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識(shí),還讓他們有了怎樣學(xué)習(xí)知識(shí)的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。

          數(shù)學(xué)有與其他學(xué)科不同的特點(diǎn),自然科學(xué)常發(fā)生新理論代替舊理論的情形,但數(shù)學(xué)不會(huì)如此。數(shù)學(xué)學(xué)習(xí)是數(shù)學(xué)發(fā)展史的縮影,是一個(gè)累進(jìn)過(guò)程。勾股定理是人類(lèi)幾千年的文化遺產(chǎn),是經(jīng)典的定理,擁有科學(xué)簡(jiǎn)潔的數(shù)學(xué)語(yǔ)言。而數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式。認(rèn)識(shí)是個(gè)人獨(dú)特的構(gòu)造結(jié)果,人的思維活動(dòng)有強(qiáng)烈的個(gè)性特征。每個(gè)學(xué)生都有自己的生活背景、家庭環(huán)境,這種特定的文化氛圍,導(dǎo)致不同的學(xué)生有不同的思維方式和解決問(wèn)題的策略。學(xué)生已有豐富的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),特別是運(yùn)用數(shù)學(xué)解決問(wèn)題的策略。學(xué)生只有用自己創(chuàng)造與體驗(yàn)的方法來(lái)學(xué)習(xí)數(shù)學(xué),才能真正地掌握數(shù)學(xué)。因而數(shù)學(xué)教學(xué)要展現(xiàn)數(shù)學(xué)的思維過(guò)程,要學(xué)生領(lǐng)會(huì)和實(shí)現(xiàn)數(shù)學(xué)化,自己去“發(fā)現(xiàn)”結(jié)果。這一課的學(xué)習(xí)就主要通過(guò)讓學(xué)生自主地探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。這堂課將信息技術(shù)融入利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動(dòng)腦動(dòng)手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過(guò)自己的活動(dòng)得出結(jié)論、使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

        《勾股定理》教學(xué)反思2

          勾股定理整章書(shū)的內(nèi)容很少,就勾股定理和勾股定理的逆定理,這節(jié)課是勾股定理的第一課時(shí),本節(jié)課主要是和學(xué)生一起探究勾股地理的認(rèn)識(shí)。在教學(xué)的過(guò)程中感覺(jué)有幾個(gè)方面需要轉(zhuǎn)變的。

          一 、轉(zhuǎn)變師生角色,讓學(xué)生自主學(xué)習(xí)。由于高效課堂中教學(xué)模式需要進(jìn)行學(xué)生自主討論交流學(xué)習(xí),在探究勾股定理的發(fā)現(xiàn)時(shí)分四人一小組由同學(xué)們合作探討作圖,去發(fā)現(xiàn)有的直角三角形的三邊具有這種關(guān)系,有的直角三角形不具有這種性質(zhì)?扇匀蛔C明不了我們的猜想是否正確。之后用拼圖的方法再來(lái)驗(yàn)證一下。讓學(xué)生們拿出準(zhǔn)備好的直角三角形和正方形,利用拼圖和面積計(jì)算來(lái)證明 + = (學(xué)生分組討論。)學(xué)生展示拼圖方法,課件輔助演示。 新課標(biāo)下要求教師個(gè)人素質(zhì)越來(lái)越高,教師自身要不斷及時(shí)地學(xué)習(xí)學(xué)科專業(yè)知識(shí),接受新信息,對(duì)自己及時(shí)充電、更新,而且要具有幽默藝術(shù)的語(yǔ)言表達(dá)能力。既要有領(lǐng)導(dǎo)者的組織指導(dǎo)能力,更重要的是要有被學(xué)生欣賞佩服的魅力,只有學(xué)生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應(yīng)付自如,高效率完成教學(xué)目標(biāo)。 “教師教,學(xué)生聽(tīng),教師問(wèn),學(xué)生答,教室出題,學(xué)生做”的'傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無(wú)法培養(yǎng)學(xué)生的實(shí)踐能力,而且會(huì)造成機(jī)械的學(xué)習(xí)知識(shí),形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,高效課堂上要求老師一定要改變角色,把主動(dòng)權(quán)交給學(xué)生,讓學(xué)生提出問(wèn)題,動(dòng)手操作,小組討論,合作交流,把學(xué)生想到的,想說(shuō)的想法和認(rèn)識(shí)都讓他們盡情地表達(dá),然后教師再進(jìn)行點(diǎn)評(píng)與引導(dǎo),這樣做會(huì)有許多意外的收獲,而且能充分發(fā)揮挖掘每個(gè)學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會(huì)與日劇增。

          二、轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會(huì)學(xué)習(xí)過(guò)程。 學(xué)生學(xué)會(huì)了數(shù)學(xué)知識(shí),卻不會(huì)解決與之有關(guān)的實(shí)際問(wèn)題,造成了知識(shí)學(xué)習(xí)和知識(shí)應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問(wèn)題,對(duì)于我們這兒的學(xué)生起點(diǎn)低、數(shù)學(xué)基礎(chǔ)差、實(shí)踐能力差,對(duì)學(xué)生的各種能力培養(yǎng)非常不利的。課堂中要特別關(guān)注:

          1、關(guān)注學(xué)生是否積極參加探索勾股定理的活動(dòng),關(guān)注學(xué)生能否在活動(dòng)中積思考,能夠探索出解決問(wèn)題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動(dòng)過(guò)程和所獲得的結(jié)論等;

          2、關(guān)注學(xué)生的拼圖過(guò)程,鼓勵(lì)學(xué)生結(jié)合自己所拼得的正方形驗(yàn)證勾股定理。

          3、學(xué)習(xí)的知識(shí)性:掌握勾股定理,體會(huì)數(shù)形結(jié)合的思想。

          三、提高教學(xué)科技含量,充分利用多媒體。 勾股定理知識(shí)屬于幾何內(nèi)容,而幾何圖形可以直觀地表示出來(lái),學(xué)生認(rèn)識(shí)圖形的初級(jí)階段中主要依靠形象思維。對(duì)幾何圖形的認(rèn)識(shí)始于觀察、測(cè)量、比較等直觀實(shí)驗(yàn)手段,現(xiàn)代兒童認(rèn)識(shí)幾何圖形亦如此,可以通過(guò)直觀實(shí)驗(yàn)了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。然而,因?yàn)閹缀螆D形本身具有抽象性和一般性,一種幾何概念可能包含無(wú)限多種不同的情形,例如有無(wú)數(shù)種形狀不同的三角形。對(duì)一種幾何概念所包含的一部分具體對(duì)象進(jìn)行直觀實(shí)驗(yàn)所得到的認(rèn)識(shí),一定適合其他情況驗(yàn)回答不了的問(wèn)題。因此,一般地,研究圖形的形狀、大小和位置。 培養(yǎng)邏輯推理能力,作了認(rèn)真的考慮和精心的設(shè)計(jì),把推理證明作為學(xué)生觀察、實(shí)驗(yàn)、探究得出結(jié)論的自然延續(xù)。教科書(shū)的幾何部分,要先后經(jīng)歷“說(shuō)點(diǎn)兒理”“說(shuō)理”“簡(jiǎn)單推理”幾個(gè)層次,有意識(shí)地逐步強(qiáng)化關(guān)于推理的初步訓(xùn)練,主要做法是在問(wèn)題的分析中強(qiáng)調(diào)求解過(guò)程所依據(jù)的道理,體現(xiàn)事出有因、言之有據(jù)的思維習(xí)慣。 由于信息技術(shù)的發(fā)展與普及,直觀實(shí)驗(yàn)手段在教學(xué)中日益增加,本節(jié)課利用我們學(xué)校建立了電教教室,通過(guò)制作課件對(duì)于幾何學(xué)的學(xué)習(xí)起到積極作用。

        《勾股定理》教學(xué)反思3

          通過(guò)本節(jié)課的教學(xué),我采用了合作探究、操作體驗(yàn)的教學(xué)方式。在課堂教學(xué)中,首先創(chuàng)設(shè)情境,提出問(wèn)題;再讓學(xué)生通過(guò)做一做、測(cè)量、判斷、找規(guī)律,猜想出一般性的結(jié)論;然后由學(xué)生想、做、量一量、猜一猜、去驗(yàn)證結(jié)論……使學(xué)生自始至終感悟、體驗(yàn)、嘗試到了知識(shí)的生成過(guò)程,品嘗著成功后帶來(lái)的樂(lè)趣。這不僅使學(xué)生學(xué)到獲取知識(shí)的思想和方法,同時(shí)也體會(huì)到在解決問(wèn)題的過(guò)程中與他人合作的重要性,而且為學(xué)生今后獲取知識(shí)以及探索、發(fā)現(xiàn)和創(chuàng)造打下了良好的基礎(chǔ),更增強(qiáng)了學(xué)生敢于實(shí)踐、勇于探索、不斷創(chuàng)新和努力學(xué)習(xí)數(shù)學(xué)知識(shí)的信心和勇氣。

          要想真正搞好以探究活動(dòng),小組合作為主的課堂教學(xué),必須不斷更新教學(xué)觀念,使課堂真正成為學(xué)生既能自主探究,師生又能合作互動(dòng)的場(chǎng)所,培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能夠適應(yīng)現(xiàn)代社會(huì)發(fā)展的`公民

          作為教師,在課堂教學(xué)中要始終牢記:學(xué)生才是學(xué)習(xí)的主體,學(xué)生才是課堂的主體;教師只是課堂教學(xué)活動(dòng)的組織者、引導(dǎo)者與合作者。因此,課堂教學(xué)過(guò)程的設(shè)計(jì),也必須體現(xiàn)出學(xué)生的主體性。

        《勾股定理》教學(xué)反思4

          一、教師我的體會(huì):

         、佟⑽腋鶕(jù)學(xué)生實(shí)際情況認(rèn)真?zhèn)湔n這節(jié)課,書(shū)本總共兩個(gè)例題,且兩個(gè)例題都很難,如果一節(jié)課就講這兩題難題,那一方面學(xué)生的學(xué)習(xí)效率會(huì)比較低,另一方面會(huì)使學(xué)生畏難情緒增加。所以,我簡(jiǎn)化教材,使教材易于操作,讓學(xué)生易于學(xué)習(xí),有利于學(xué)生學(xué)習(xí)新知識(shí)、接受新知識(shí),降低學(xué)習(xí)難度。

          把教材讀薄,

         、凇⒊藗浣滩耐,還備學(xué)生。從教案及授課過(guò)程也可以看出,充分考慮到了學(xué)生的年齡特點(diǎn):對(duì)新事物有好奇心,但對(duì)新知識(shí)的鉆研熱情又不夠高,這樣,造成教學(xué)難度較大,為了改變這一狀況,在處理教材時(shí),把某些數(shù)學(xué)語(yǔ)言轉(zhuǎn)換成通俗文字來(lái)表達(dá),把難度大的運(yùn)用能力降低為難度稍細(xì)的理解能力,讓學(xué)生樂(lè)于面對(duì)奧妙而又有一定深度的數(shù)學(xué),樂(lè)于學(xué)習(xí)數(shù)學(xué)。

         、邸⑿抡n選用的例子、練習(xí),都是經(jīng)過(guò)精心挑選的,運(yùn)用性強(qiáng),貼近生活,與生活實(shí)際緊密聯(lián)系,既達(dá)到學(xué)習(xí)、鞏固新知識(shí)的目的,同時(shí),又充分展現(xiàn)出數(shù)學(xué)教學(xué)的重大特征:數(shù)學(xué)源于生活實(shí)際,又服務(wù)于生活實(shí)際。勾股定理源于生活,但同時(shí)它又能極大的為生活服務(wù)。

         、、使用多媒體進(jìn)行教學(xué),使知識(shí)顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。

          二、學(xué)生體會(huì):

          課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的'一些應(yīng)用,通過(guò)這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來(lái)源于生活,我們的幾何圖形和幾何計(jì)算對(duì)于勾股定理來(lái)說(shuō)非常廣泛,而且以后更要用好它。對(duì)于勾股定理都應(yīng)用時(shí),我覺(jué)得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機(jī)智地進(jìn)行計(jì)算和一些推理。另外與同學(xué)間在數(shù)學(xué)課上有自主學(xué)習(xí)的機(jī)會(huì),有相互之間的討論、爭(zhēng)辯等協(xié)作的機(jī)會(huì),在合作學(xué)習(xí)的過(guò)程中共同提高我覺(jué)得都是難得的機(jī)會(huì)。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺(jué)得圖形很美,古代的數(shù)學(xué)家已經(jīng)有了很好的研究并作出了很大的貢獻(xiàn),現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時(shí)在課堂中漸漸地培養(yǎng)了我們的數(shù)學(xué)興趣和一定的思維能力。

          不過(guò)課堂上老師在最后一題的畫(huà)圖中能放一放,讓我們有時(shí)間去思考怎么畫(huà),那會(huì)更好些,自然思維也得到了發(fā)展。課上老師鼓勵(lì)我們嘗試不完善的甚至錯(cuò)誤的意見(jiàn),大膽發(fā)表自己的見(jiàn)解,體現(xiàn)了我們是學(xué)習(xí)的主人。數(shù)學(xué)課堂里充滿了智慧。

        《勾股定理》教學(xué)反思5

          根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位,為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我設(shè)計(jì)了以下幾個(gè)環(huán)節(jié):

          1.創(chuàng)設(shè)情境,提出猜想讓學(xué)生判斷兩位同學(xué)的畫(huà)法是否都能得到斜邊為10cm的直角三角形,通過(guò)對(duì)不同畫(huà)法的探究,溫故知新,為用構(gòu)造全等三角形的方法證明勾股定理的逆定理做好鋪墊.同時(shí),引導(dǎo)學(xué)生從特殊到一般提出猜想。

          2.證明猜想,得出新知。由于有前一環(huán)節(jié)的`鋪墊,通過(guò)啟發(fā)、引導(dǎo)、討論,讓學(xué)生體會(huì)用構(gòu)造全等三角形的方法證明問(wèn)題的思想,突破定理證明這一難點(diǎn),并適時(shí)出示課題。

          3.應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運(yùn)用所學(xué)知識(shí)解決相應(yīng)問(wèn)題,提高學(xué)生的分析解題能力,我設(shè)計(jì)了三個(gè)層次的問(wèn)題,以達(dá)到教學(xué)目標(biāo).第一層次是讓學(xué)生直接運(yùn)用定理判斷三角形是否是直角三角形,掌握定理基本運(yùn)用;第二層次是強(qiáng)調(diào)已知三角形三邊長(zhǎng)或三邊關(guān)系,就有意識(shí)的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個(gè)層次做好了鋪墊;第三層次是靈活運(yùn)用勾股定理與逆定理解決圖形面積的計(jì)算問(wèn)題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會(huì)分割的思想.設(shè)計(jì)的題型前后呼應(yīng),使知識(shí)有序推進(jìn),有助于學(xué)生的理解和掌握;讓學(xué)生通過(guò)合作、交流、反思、感悟的過(guò)程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂(lè)趣,并從中獲得成功的體驗(yàn).真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。

          4.歸納小結(jié),形成體系讓學(xué)生交流學(xué)習(xí)的收獲、課堂經(jīng)歷的感受和對(duì)數(shù)學(xué)思想方法的感悟體會(huì)等.幫助學(xué)生內(nèi)化新知,優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),形成能力,減輕課后負(fù)擔(dān)。

          5.布置作業(yè),課外延伸分層布置作業(yè),目的是讓不同的學(xué)生得到不同層次的發(fā)展

        《勾股定理》教學(xué)反思6

          《勾股定理》為八年級(jí)上第三章第一節(jié)的內(nèi)容。教學(xué)的實(shí)踐中難免會(huì)有一些錯(cuò)漏,為了彌補(bǔ)教學(xué)中的許多不足,數(shù)學(xué)網(wǎng)特地收集了相關(guān)的《勾股定理》教學(xué)反思人教版,僅供大家參考學(xué)習(xí)。

          導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)!昂玫拈_(kāi)始是成功的一半”,在課的起始階段,迅速集中學(xué)生的注意力,把他們思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)起學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲,對(duì)這堂課教學(xué)的成敗與否起著至關(guān)重要的作用。運(yùn)用多媒體展示這一有意義的圖案,可有效地開(kāi)啟學(xué)生思維的閘門(mén),激發(fā)聯(lián)想,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),使學(xué)生在輕松愉悅的氛圍中學(xué)到知識(shí)。

          本節(jié)課把學(xué)生的探索活動(dòng)放在首位,一方面要求學(xué)生在教師引導(dǎo)下自主探索,合作交流,另一方面要求學(xué)生對(duì)探究過(guò)程中用到的數(shù)學(xué)思想方法有一定的領(lǐng)悟和認(rèn)識(shí).從而教給學(xué)生探求知識(shí)的方法,教會(huì)學(xué)生獲取知識(shí)的本領(lǐng).并確立了如下的教學(xué)目標(biāo):

          1、學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過(guò)程,經(jīng)歷探求三個(gè)正方形面積間的'關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過(guò)程。并從過(guò)程中讓學(xué)生體會(huì)數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測(cè)一般的合情推理能力。

          2、讓學(xué)生經(jīng)歷圖形分割實(shí)驗(yàn)、計(jì)算面積的過(guò)程,嘗試從不同的角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,積累解決問(wèn)題的經(jīng)驗(yàn),在過(guò)程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;通過(guò)解決問(wèn)題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

          3、通過(guò)老師的介紹,體會(huì)一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內(nèi)涵,激發(fā)生的熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感。

          除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時(shí)地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過(guò)介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛(ài)國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實(shí)例,既讓學(xué)生感受到學(xué)習(xí)知識(shí)應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識(shí)的途徑等方面.給學(xué)生自由的空間,鼓勵(lì)學(xué)生多說(shuō).這樣引導(dǎo)學(xué)生從多角度對(duì)本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動(dòng)地探求對(duì)勾股定理更深入的認(rèn)識(shí)、拓展學(xué)生的視野.

        《勾股定理》教學(xué)反思7

          勾股定理是我們這學(xué)期教學(xué)中一個(gè)非常重要的定理,它揭示了直角三角形的三邊之間的數(shù)量關(guān)系,是典型的數(shù)形結(jié)合思想的運(yùn)用,拿著我們初二數(shù)學(xué)備課組全體老師的精心設(shè)計(jì)的講學(xué)稿,上完課后,反思不少。本節(jié)課的設(shè)計(jì)主要是根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu),“以畫(huà)一畫(huà)、量一量、算一算、證一證、用一用”為主線軸展開(kāi)教學(xué)的,著實(shí)體現(xiàn)了知識(shí)的'發(fā)生、形成和發(fā)展的過(guò)程,真正地讓學(xué)生體會(huì)到觀察、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想,探究出勾股定理的內(nèi)容,并能做到簡(jiǎn)單地應(yīng)用,主要成功的地方有:

          一、導(dǎo)入新課,設(shè)疑巧激趣。

          引入20xx年在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo),展示“弦圖”并設(shè)疑,迅速集中了學(xué)生的注意力,把學(xué)生的思緒帶進(jìn)了特定的學(xué)習(xí)環(huán)境中,激發(fā)了全班同學(xué)的濃厚興趣和強(qiáng)烈的求知欲,為本節(jié)課的成功創(chuàng)造了有利條件。

          二、引導(dǎo)量量、猜猜、證證,有條不紊,思路清晰。

          讓學(xué)生動(dòng)手畫(huà)直角三角形,觀察、分析,引導(dǎo)學(xué)生自己得出結(jié)論,再對(duì)結(jié)論進(jìn)行科學(xué)的論證,用所得的結(jié)論解決數(shù)學(xué)問(wèn)題。在課堂上,探索目標(biāo)明確,體現(xiàn)了教學(xué)的重點(diǎn)和難點(diǎn),充分發(fā)揮了學(xué)生的主體作用,調(diào)動(dòng)了學(xué)生的積極性,培養(yǎng)了學(xué)生動(dòng)手操作的能力,體現(xiàn)了以學(xué)生為主體的意識(shí),各環(huán)節(jié)銜接緊密,學(xué)生課堂反應(yīng)好。

          三、注重學(xué)生的情感目標(biāo),實(shí)現(xiàn)加強(qiáng)愛(ài)國(guó)主義教育。

          本節(jié)課在教學(xué)探討的過(guò)程中,還滲透著勾股定理的歷史方化背景,激發(fā)學(xué)生的民族自豪感,促使探索新知識(shí)的熱情,整個(gè)課堂師生和諧,氣氛好;師生共同探討并驗(yàn)證定理,鼓勵(lì)學(xué)生再用其他方法來(lái)驗(yàn)證所得的勾股定理結(jié)論。

          四、課堂上充分體現(xiàn)學(xué)生的主體地位,教師是組織者,引導(dǎo)者。

          例:在引入拼圖驗(yàn)證定理時(shí),學(xué)生以前從未接觸過(guò),故在教學(xué)中我就多給學(xué)生適當(dāng)指導(dǎo)和鼓勵(lì),盡量做學(xué)生的組織者、合作者。

          通過(guò)這節(jié)課,備課、上課之后,感悟點(diǎn)點(diǎn)滴滴,確實(shí)還存在著一些遺憾。

         、俑杏X(jué)今天這堂課沒(méi)有平時(shí)上課的氣氛那么濃,部分同學(xué)認(rèn)為是錄像課,不敢拋頭露面,甚至連回答問(wèn)題的聲音都小了很多,故主動(dòng)提問(wèn)的人較少。

         、谥v學(xué)稿編設(shè)的內(nèi)容較多,有點(diǎn)欲速則不達(dá)的感覺(jué)。

        《勾股定理》教學(xué)反思8

          《勾股定理》是人教版教材八年級(jí)數(shù)學(xué)(下)的內(nèi)容,第一課時(shí)的教學(xué)重點(diǎn)是讓學(xué)生經(jīng)歷勾股定理的探索和證明過(guò)程,了解勾股定理的背景知識(shí),在學(xué)習(xí)知識(shí)的同時(shí),感受勾股定理的豐富文化內(nèi)涵,激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)學(xué)生進(jìn)行思想品德教育。

          針對(duì)教材的任務(wù)要求,我是按照如下的教學(xué)流程進(jìn)行的:

          一。欣賞圖片引入新課,激發(fā)學(xué)生學(xué)習(xí)興趣

          通過(guò)欣賞20xx年在我國(guó)北京召開(kāi)的.國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引出“趙爽弦圖”,讓學(xué)生了解我國(guó)古代輝煌的數(shù)學(xué)成就,引入課題。

          接下來(lái),讓學(xué)生欣賞傳說(shuō)故事:相傳2500年前,畢達(dá)格拉斯在朋友家做客時(shí),發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過(guò)故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。

          這樣,一方面激發(fā)學(xué)生的求知欲望,另一方面,也對(duì)學(xué)生進(jìn)行了學(xué)習(xí)方法指導(dǎo)和解決問(wèn)題能力的培養(yǎng)。

          二。動(dòng)手探究,得出猜想

          通過(guò)對(duì)地板圖形中的等腰直角三角形三邊關(guān)系到一般直角三角形中三邊關(guān)系的探究,讓同學(xué)們體驗(yàn)由特殊到一般的探究過(guò)程,學(xué)習(xí)這種研究方法。

          在這一過(guò)程中,學(xué)生充分利用學(xué)具去嘗試解決,力求讓學(xué)生自己探索,先在小組內(nèi)討論,然后在全班討論,盡量學(xué)習(xí)更多的方法。

          三。動(dòng)手實(shí)踐,得出定理

          先了解趙爽的證明思路,然后讓學(xué)生利用學(xué)具自己動(dòng)手剪拼,并利用圖形進(jìn)行證明。

          由于難度比較大,組織學(xué)生開(kāi)展小組合作學(xué)習(xí)。教師要巡回輔導(dǎo),給予學(xué)生必要的幫助。

        《勾股定理》教學(xué)反思9

          本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察--猜想--歸納--驗(yàn)證--應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。另外,我在探索的過(guò)程中補(bǔ)充了一個(gè)倒水實(shí)驗(yàn),(放片子)我個(gè)人覺(jué)得效果很好,它讓學(xué)生深刻的體會(huì)到了,不是所有三角形三邊都有a2+ b2= c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實(shí)驗(yàn)很具有直觀性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達(dá)到了再次點(diǎn)燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。

          除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時(shí)地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過(guò)介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛(ài)國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神。

          練習(xí)反饋中既有勾股定理的'基本應(yīng)用,還有貼近學(xué)生生活的實(shí)例,既讓學(xué)生感受到學(xué)習(xí)知識(shí)應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用。

          讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識(shí)的途徑等方面。給學(xué)生自由的空間,鼓勵(lì)學(xué)生多說(shuō)。這樣引導(dǎo)學(xué)生從多角度對(duì)本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力。

          作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動(dòng)地探求對(duì)勾股定理更深入的認(rèn)識(shí)、拓展學(xué)生的視野。

          通過(guò)這節(jié)課,備課、上課后,我個(gè)人還有一些困惑,一是問(wèn)題情境的創(chuàng)設(shè)(放片子),原本的意圖是激發(fā)學(xué)生的學(xué)習(xí)興趣,可是感覺(jué)學(xué)生反映平平。創(chuàng)設(shè)什么樣的問(wèn)題情景更合適?

          二是:探究問(wèn)題的設(shè)計(jì)(放片子),本節(jié)課是一節(jié)典型的探究課,如何設(shè)計(jì)探究問(wèn)題,才能使學(xué)生在探究過(guò)程中數(shù)學(xué)學(xué)習(xí)能力得到提高,教學(xué)任務(wù)順利完成并達(dá)到預(yù)期效果?

        《勾股定理》教學(xué)反思10

          教學(xué)目標(biāo)

          一、知識(shí)與技能

          1.掌握直角三角形的判別條件。

          2.熟記一些勾股數(shù)。

          3.掌握勾股定理的逆定理的探究方法。

          二、過(guò)程與方法

          1.用三邊的數(shù)量關(guān)系來(lái)判斷一個(gè)三角形是否為直角三角形,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。

          2.通過(guò)對(duì)Rt△判別條件的研究,培養(yǎng)學(xué)生大膽猜想,勇于探索的創(chuàng)新精神。

          三、情感態(tài)度與價(jià)值觀

          1.通過(guò)介紹有關(guān)歷史資料,激發(fā)學(xué)生解決問(wèn)題的愿望。

          2.通過(guò)對(duì)勾股定理逆定理的探究;培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和創(chuàng)新精神。

          教學(xué)重點(diǎn)探究勾股定理的逆定理,理解互逆命題,原命題、逆命題的有關(guān)概念及關(guān)系.理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。

          教學(xué)難點(diǎn)理解勾股定理的逆定理的推導(dǎo)。

          教具準(zhǔn)備多媒體課件。

          教學(xué)過(guò)程

          一、創(chuàng)設(shè)問(wèn)屬情境,引入新課

          活動(dòng)1

         。1)總結(jié)直角三角形有哪些性質(zhì)。

         。2)一個(gè)三角形,滿足什么條件是直角三角形?

          設(shè)計(jì)意圖:通過(guò)對(duì)前面所學(xué)知識(shí)的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個(gè)三角形為直角三角形,提高學(xué)生發(fā)現(xiàn)反思問(wèn)題的.能力。

          師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶。

          本活動(dòng),教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極主動(dòng)地回憶,總結(jié)前面學(xué)過(guò)的舊知識(shí);②能否“溫故知新”。

          生:直角三角形有如下性質(zhì):

          (1)有一個(gè)角是直角;

         。2)兩個(gè)銳角互余;

         。3)兩直角邊的平方和等于斜邊的平方;

          (4)在含30°角的直角三角形中,30°的角所對(duì)的直角邊是斜邊的一半。

          師:那么,一個(gè)三角形滿足什么條件,才能是直角三角形呢?

          生:有一個(gè)內(nèi)角是90°,那么這個(gè)三角形就為直角三角形。

          生:如果一個(gè)三角形,有兩個(gè)角的和是90°,那么這個(gè)三角形也是直角三角形。

          師:前面我們剛學(xué)習(xí)了勾股定理,知道一個(gè)直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來(lái)判定它是否為直角三角形呢?我們來(lái)看一下古埃及人如何做?

          二、講授新課

          活動(dòng)2

          問(wèn)題:據(jù)說(shuō)古埃及人用下圖的方法畫(huà)直角:把一根長(zhǎng)蠅打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié),4個(gè)結(jié)、5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角。

          這個(gè)問(wèn)題意味著,如果圍成的三角形的三邊分別為3、4、5。有下面的關(guān)系“32+42=52”。那么圍成的三角形是直角三角形。

          畫(huà)畫(huà)看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫(huà)出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.

          設(shè)計(jì)意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形就為直免三角形的結(jié)論,培養(yǎng)學(xué)生動(dòng)手操作能力和尋求解決數(shù)學(xué)問(wèn)題的一般方法。

          師生行為讓學(xué)生在小組內(nèi)共同合作,協(xié)手完成此活動(dòng)。教師參與此活動(dòng),并給學(xué)生以提示、啟發(fā)。在本活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極動(dòng)手參與;②能否從操作活動(dòng)中,用數(shù)學(xué)語(yǔ)言歸納、猜想出結(jié)論;③學(xué)生是否有克服困難的勇氣。

          生:我們不難發(fā)現(xiàn)上圖中,第(1)個(gè)結(jié)到第(4)個(gè)結(jié)是3個(gè)單位長(zhǎng)度即AC=3;同理BC=4,AB=5.因?yàn)?2+42=52。我們圍成的三角形是直角三角形。

          生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過(guò)測(cè)量后,發(fā)現(xiàn)6.5cm的邊所對(duì)的角是直角,并且2.52+62=6.52.

          再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標(biāo)可以發(fā)現(xiàn)8.5cm的邊所對(duì)的角是直角,且也有42+7.52=8.52.

          是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個(gè)直角三角形呢?

          活動(dòng)3下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c

          5,12,13;7,24,25;8,15,17。

         。1)這三組效都滿足a2+b2=c2嗎?

          (2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?

          設(shè)計(jì)意圖:本活動(dòng)通過(guò)讓學(xué)生按已知數(shù)據(jù)作出三角形,并測(cè)量三角形三個(gè)內(nèi)角的度數(shù)來(lái)進(jìn)一步獲得一個(gè)三角形是直角三角形的有關(guān)邊的條件。

          師生行為:學(xué)生進(jìn)一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅(jiān)信前面猜想出的結(jié)論。

          教師對(duì)學(xué)生歸納出的結(jié)論應(yīng)給予解釋,我們將在下一節(jié)給出證明.本活動(dòng)教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①對(duì)猜想出的結(jié)論是否還有疑慮;②能否積極主動(dòng)的操作,并且很有耐心。

          生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。

          師:很好,我們進(jìn)一步通過(guò)實(shí)際操作,猜想結(jié)論。

          命題2如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2那么這個(gè)三角形是直角三角形。

          同時(shí),我們也進(jìn)一步明白了古埃及人那樣做的道理.實(shí)際上,古代中國(guó)人也曾利用相似的方法得到直角,直至科技發(fā)達(dá)的今天。

        《勾股定理》教學(xué)反思11

          本節(jié)課的設(shè)計(jì)目的是培養(yǎng)學(xué)生準(zhǔn)確地將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,建立幾何模型(即直角三角形),能正確遠(yuǎn)用勾股定理解釋生活中問(wèn)題,通過(guò)運(yùn)用勾股定理對(duì)實(shí)際問(wèn)題的解釋和應(yīng)用,進(jìn)一步加強(qiáng)培養(yǎng)學(xué)生注意從身邊的事物中抽象出幾何模型(直角三角形)的能力,使學(xué)生更加深刻地認(rèn)識(shí)到數(shù)學(xué)的本質(zhì):“數(shù)學(xué)來(lái)源于生活,同時(shí)又能服務(wù)于生活”,激起廣大學(xué)生對(duì)數(shù)學(xué)對(duì)生活的熱愛(ài)。

          這節(jié)課主要是圍繞“課前預(yù)習(xí)?—設(shè)置問(wèn)題—幾何建模—解決問(wèn)題—相應(yīng)練習(xí)—拓展延伸”這一主線軸展開(kāi)教學(xué)工作。其中主要體現(xiàn)在:

          首先,創(chuàng)設(shè)情境,激發(fā)興趣。

          由教材中的實(shí)例引入,讓學(xué)生猜一猜,梯的頂端下滑0.5米,問(wèn)梯的底端將滑動(dòng)多少米?也是滑動(dòng)0.5米嗎?學(xué)生將會(huì)得出不同的反應(yīng),甚至爭(zhēng)論;這時(shí)教師就恰到好處地引導(dǎo)學(xué)生建立幾何模型(即直角三角形)再運(yùn)用勾股定理解決問(wèn)題,最終來(lái)驗(yàn)證彼此的猜想,這樣一來(lái),課堂氣氛特別輕松,學(xué)生解決問(wèn)題的興趣也格外濃。

          其次,注重學(xué)生自主探究,合作交流。

          在探討例1、例2時(shí)都是先讓學(xué)生根據(jù)生活經(jīng)驗(yàn),猜一猜結(jié)論,然后再動(dòng)手建摸、驗(yàn)證、質(zhì)疑、討論,充分體現(xiàn)了學(xué)生的'主體地位,學(xué)生是發(fā)現(xiàn)者、探索者,教師是參入學(xué)習(xí)的啟發(fā)者、協(xié)調(diào)者、激勵(lì)者,體現(xiàn)出了教師的主導(dǎo)作用。

          第三,創(chuàng)設(shè)機(jī)會(huì),讓學(xué)生學(xué)會(huì)思考,樂(lè)于思考、善于思考。

          在教學(xué)中有意識(shí)地安排一些問(wèn)題讓學(xué)生多途徑思考,發(fā)現(xiàn)答案多種多樣,讓他們體味出教學(xué)的精彩,享受做數(shù)學(xué)的成功喜悅。

          通過(guò)備課、上課后,雖然取得一定成功,但感到作為一位數(shù)學(xué)教師,要不斷地及時(shí)學(xué)習(xí)新的知識(shí),接受新信息;不斷地及時(shí)充電、更新、常常使用詼諧幽默的語(yǔ)言;既要有領(lǐng)導(dǎo)者組織指導(dǎo)、調(diào)控能力,又要有被學(xué)生欣賞佩服的魅力;要讓學(xué)生課堂上配合你、信任你、喜歡你,只要達(dá)到了這一高度,我們才能輕松自如地駕御課堂,高效、高質(zhì)、高量地完成教學(xué)預(yù)設(shè)目標(biāo)。

        《勾股定理》教學(xué)反思12

          這次展示課,我上的是八年級(jí)數(shù)學(xué)課《17.2勾股定理的逆定理》,我是根據(jù)“五步三查”課堂模式來(lái)設(shè)計(jì)“導(dǎo)學(xué)案”和組織教學(xué)的。 這次課相對(duì)于過(guò)去基礎(chǔ)上的課堂改革是完全不同的課,其進(jìn)步之處之一是規(guī)范了課堂的結(jié)構(gòu),明確了課堂模式“五步三查”,操作上更能心中有數(shù)。進(jìn)步之二是發(fā)揮學(xué)生的積極性方式與手段更多些,“老師需要什么?就評(píng)價(jià)什么”,進(jìn)行了有益的嘗試,將評(píng)價(jià)納入整個(gè)課堂,如何通過(guò)開(kāi)展小組的評(píng)比與競(jìng)賽調(diào)動(dòng)學(xué)生積極性及學(xué)習(xí)氛圍積累了經(jīng)驗(yàn)。進(jìn)步之三是“導(dǎo)學(xué)案”的編寫(xiě)上更適和學(xué)生,更有利于對(duì)課堂的指導(dǎo)。進(jìn)步之四是課堂效率和課堂效果更好。進(jìn)步之五學(xué)生的主體作用得到了真正的體現(xiàn)。進(jìn)步之六是課堂不僅成了學(xué)習(xí)知識(shí)的地方,更是增進(jìn)情感、培養(yǎng)能力的地方。

          這次展示課也有待改進(jìn)的地方,其一是“五步三查”模式操作細(xì)節(jié)不清楚,對(duì)整個(gè)操作流程理解不到位,導(dǎo)致整個(gè)課堂有些亂,因不能多講,又不放心學(xué)生學(xué)。其二是學(xué)生的能力培養(yǎng)還應(yīng)下大功夫,過(guò)去是以老師講為主,學(xué)生只是聽(tīng)記,現(xiàn)在要他們自學(xué)、討論,同學(xué)們還不習(xí)慣,導(dǎo)致課堂有些沉悶。其三是時(shí)間緊,教學(xué)任務(wù)完不成,課堂的'知識(shí)掌握度、能力目標(biāo)達(dá)成度較低。其四是“五步三查”各細(xì)節(jié)的科學(xué)性、有效性落實(shí),有許多細(xì)節(jié)的落實(shí)與協(xié)調(diào)有待深化,如如何評(píng)價(jià)?如何有效利用評(píng)價(jià)得分?如何有效獨(dú)學(xué)?其五是“導(dǎo)學(xué)案”如何更科學(xué)編制?體現(xiàn)分層同時(shí)又能更有利于指導(dǎo)學(xué)生的學(xué),也有利于指導(dǎo)教師的教。其六更主要的是老師的觀念,樹(shù)立學(xué)生為主體的觀念,將學(xué)生發(fā)展落實(shí)到教育教學(xué)各環(huán)節(jié)這才是根本。勇于變革和創(chuàng)新,積極研究和實(shí)踐才能保障我們的課堂改革更順利推進(jìn)。雖然存在這樣多,或更多的問(wèn)題,但對(duì)其前景我們每一個(gè)人都充滿了信心,我們相信只有這樣做才能真正達(dá)到教育的目標(biāo)。

        《勾股定理》教學(xué)反思13

          星期三上午第一節(jié)講了《勾股定理逆定理》第一課時(shí),課后效果和我預(yù)想的一樣,由于探究?jī)?nèi)容偏多,課堂容量大,后半部分感覺(jué)倉(cāng)促,留給學(xué)生的思考時(shí)間顯得不足。

          回頭反思,這節(jié)課的設(shè)計(jì)思路比較合理:定理來(lái)源于生活,服務(wù)于生活。我由勾股定理引出一道生活實(shí)際問(wèn)題,引起學(xué)生的求知欲,然后和學(xué)生分三種方法探究,得出“勾股定理逆定理”,經(jīng)過(guò)課堂練習(xí)夯實(shí)基礎(chǔ),最后利用新知解決開(kāi)課時(shí)提出的'生活實(shí)際問(wèn)題,首尾呼應(yīng),學(xué)以致用。

          對(duì)互逆命題,原命題,逆命題,互逆定理,逆定理等概念的講解可隨題點(diǎn)化,而詳細(xì)講解、隨堂練習(xí)可做為第二課時(shí)的重點(diǎn),讓出更多時(shí)間來(lái)做勾股定理逆定理的相應(yīng)練習(xí),特別是應(yīng)加大有靈活度和難度生活習(xí)題的練習(xí),拓寬學(xué)生知識(shí)面,提高學(xué)生的發(fā)散思維能力。

          總之,課堂設(shè)計(jì)要做到一個(gè)“狠”字,該刪除的就刪,教學(xué)目標(biāo)不可貪多。我們圍繞授課重點(diǎn)做相應(yīng)探究,練習(xí),次重點(diǎn)可放在下個(gè)課時(shí)重點(diǎn)講解,探究時(shí)間要預(yù)留充足,相應(yīng)練習(xí)寧精勿多,注重雙基才是根本。

        《勾股定理》教學(xué)反思14

          勾股定理是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ)。它緊密聯(lián)系了數(shù)學(xué)中兩個(gè)最基本的量——數(shù)與形,能夠把形的特征(三角形中一個(gè)角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+b2=c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位。

          八年級(jí)學(xué)生已具備一定的分析與歸納能力,初步掌握了探索圖形性質(zhì)的基本方法。但是學(xué)生對(duì)用割補(bǔ)方法和面積計(jì)算證明幾何命題的意識(shí)和能力存在障礙,對(duì)于如何將圖形與數(shù)有機(jī)的結(jié)合起來(lái)還很陌生。

          基于以上原因,本節(jié)課把學(xué)生的探索活動(dòng)放在首位,一方面要求學(xué)生在教師引導(dǎo)下自主探索,合作交流,另一方面要求學(xué)生對(duì)探究過(guò)程中用到的數(shù)學(xué)思想方法有一定的領(lǐng)悟和認(rèn)識(shí)。從而教給學(xué)生探求知識(shí)的方法,教會(huì)學(xué)生獲取知識(shí)的本領(lǐng)。并確立了如下的教學(xué)目標(biāo):

          1、學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過(guò)程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過(guò)程。并從過(guò)程中讓學(xué)生體會(huì)數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測(cè)一般的.合情推理能力。

          2、讓學(xué)生經(jīng)歷圖形分割實(shí)驗(yàn)、計(jì)算面積的過(guò)程,嘗試從不同的角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,積累解決問(wèn)題的經(jīng)驗(yàn),在過(guò)程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;通過(guò)解決問(wèn)題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

          3、通過(guò)老師的介紹,體會(huì)一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內(nèi)涵,激發(fā)生的熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感。

          教學(xué)難點(diǎn)將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積。

          本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察——猜想——?dú)w納——驗(yàn)證——應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。另外,我在探索的過(guò)程中補(bǔ)充了一個(gè)倒水實(shí)驗(yàn),(放片子)我個(gè)人覺(jué)得效果很好,它讓學(xué)生深刻的體會(huì)到了,不是所有三角形三邊都有a2+b2=c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實(shí)驗(yàn)很具有直觀性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達(dá)到了再次點(diǎn)燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。

          除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時(shí)地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過(guò)介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛(ài)國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神。練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實(shí)例,既讓學(xué)生感受到學(xué)習(xí)知識(shí)應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用。讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識(shí)的途徑等方面。給學(xué)生自由的空間,鼓勵(lì)學(xué)生多說(shuō)。這樣引導(dǎo)學(xué)生從多角度對(duì)本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力。作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動(dòng)地探求對(duì)勾股定理更深入的認(rèn)識(shí)、拓展學(xué)生的視野。

        《勾股定理》教學(xué)反思15

          《勾股定理》一章檢測(cè)結(jié)果出來(lái)了,學(xué)生考績(jī)很不理想,很多不該錯(cuò)的題做錯(cuò)了。是什么原因致使錯(cuò)誤頻出呢?我輾轉(zhuǎn)反側(cè)。

          一是沒(méi)有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△ABC中,AC=3,BC=4,有的同學(xué)直接根據(jù)勾股定理得:AB=5。這是因?yàn)榕c勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問(wèn)題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。

          二是沒(méi)有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長(zhǎng)分別是4c和5c,求第三邊的長(zhǎng)。很多同學(xué)可能是受勾股數(shù)“3,4,5”的影響,錯(cuò)把結(jié)果寫(xiě)成了3c,其實(shí)這里的第三邊是斜邊.

          三是缺乏分類(lèi)思想,考慮問(wèn)題不全面,導(dǎo)致解答錯(cuò)誤。例如:已知直角三角形兩邊長(zhǎng)分別是1、4,求第三邊的長(zhǎng)。這里的第三邊有可能是斜邊也有可能是直角邊,所以結(jié)果應(yīng)該有兩個(gè),但好多同學(xué)都填了一個(gè)答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面積。此題應(yīng)考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會(huì)漏解。

          四是利用直角三角形的判別條件時(shí),沒(méi)有分清較短邊和較長(zhǎng)邊。例如:已知三角形的三邊長(zhǎng)分別為a=0.6,b=1,c=0.8,問(wèn)這個(gè)三角形是直角三角形嗎?有的同學(xué)認(rèn)為此三角形不是直角三角形,其實(shí)這個(gè)三角形是以b為斜邊的直角三角形。

          五是缺少方程思想和轉(zhuǎn)化思想,使綜合類(lèi)試題痛失分?jǐn)?shù)。

          六是書(shū)寫(xiě)不規(guī)范。例如:運(yùn)用直角三角形的判別條件,判別一個(gè)三角形是否為直角三角形的過(guò)程中,有的同學(xué)寫(xiě)出一句“由勾股定理得”的不恰當(dāng)?shù)臄⑹觥?/p>

          針對(duì)上述問(wèn)題,痛定思痛,感悟頗多:

          第一,教學(xué)不可削弱技能的訓(xùn)練。要學(xué)生真正掌握某個(gè)知識(shí),如果缺少相應(yīng)技能的訓(xùn)練是不科學(xué)的。正如教人開(kāi)車(chē)的教練把開(kāi)車(chē)的要點(diǎn)、技巧講清楚,然后叫學(xué)車(chē)的學(xué)生馬上開(kāi)車(chē)去考試一樣。試問(wèn):當(dāng)教師在講臺(tái)上滔滔不絕地講解時(shí),能否保證每一個(gè)學(xué)生都專心去聽(tīng)?能否保證每一個(gè)專心去聽(tīng)的學(xué)生都聽(tīng)得明白?能否保證每一個(gè)聽(tīng)得明白的學(xué)生都能解同一類(lèi)題目?可見(jiàn):“課堂上教師講,學(xué)生聽(tīng),聽(tīng)就會(huì)懂,懂就會(huì)做!敝皇墙處熞粠樵傅淖龇,教師只有不滿足于自己的“講清楚”,在課堂上幫助學(xué)生獨(dú)立完成,并進(jìn)行一定量的訓(xùn)練,才能實(shí)現(xiàn)教學(xué)的有效性。

          第二,巧設(shè)錯(cuò)誤案例,讓學(xué)生辨錯(cuò)、糾錯(cuò),即學(xué)生對(duì)教師的有意“示錯(cuò)”進(jìn)行分析、判斷,提高防錯(cuò)能力。在教學(xué)中,教師有時(shí)可恰到好處,有意地把估計(jì)學(xué)生易錯(cuò)的做法顯示給學(xué)生,以引起學(xué)生的注意,然后通過(guò)師生共同分析錯(cuò)因,加以糾錯(cuò),達(dá)到及時(shí)、有效預(yù)防,并避免學(xué)生出現(xiàn)類(lèi)似錯(cuò)誤的目的。這樣,可防患于未然,并提高學(xué)生分析、判斷、解決問(wèn)題的能力。

          第三,教學(xué)應(yīng)注重?cái)?shù)學(xué)思想和方法傳授。理解掌握各種數(shù)學(xué)思想和方法是形成數(shù)學(xué)技能技巧,提高數(shù)學(xué)能力的前提。 學(xué)生學(xué)習(xí)數(shù)學(xué),學(xué)會(huì)是基礎(chǔ),會(huì)學(xué)是目的,教是為了不教。教學(xué)中,在加強(qiáng)技能訓(xùn)練的同時(shí),要強(qiáng)化數(shù)學(xué)思想和數(shù)學(xué)方法的教學(xué),做到講方法聯(lián)系思想,以思想指導(dǎo)方法,使二者相互交融,相得益彰。此外,在教學(xué)中培養(yǎng)學(xué)生的“問(wèn)題意識(shí)”,激勵(lì)學(xué)生善于發(fā)現(xiàn)問(wèn)題、思考問(wèn)題,并能運(yùn)用數(shù)學(xué)方法去解決廣泛的'多種多樣的實(shí)際問(wèn)題,以便增強(qiáng)學(xué)生探究新知識(shí)、新方法的創(chuàng)造能力。

          第四,教學(xué)應(yīng)加大綜合訓(xùn)練的力度。目前的綜合題已經(jīng)由單純的知識(shí)疊加型轉(zhuǎn)化為知識(shí)、方法和能力綜合型尤其是創(chuàng)新能力型試題,具有知識(shí)容量大、解題方法多、能力要求高、突顯數(shù)學(xué)思想方法的運(yùn)用以及創(chuàng)新意識(shí)等特點(diǎn)。教學(xué)時(shí)應(yīng)抓好“三轉(zhuǎn)”能力的培養(yǎng):(1)語(yǔ)言轉(zhuǎn)換能力。每道數(shù)學(xué)綜合題都是由一些特定的文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言所組成,解綜合題往往需要較強(qiáng)的語(yǔ)言轉(zhuǎn)換能力,能把普通語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)語(yǔ)言。(2)概念轉(zhuǎn)換能力:綜合題的轉(zhuǎn)譯常常需要較強(qiáng)的數(shù)學(xué)概念的轉(zhuǎn)換能力。(3)數(shù)形轉(zhuǎn)換能力。解題中的數(shù)形結(jié)合,就是對(duì)題目的條件和結(jié)論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結(jié)合上找出解題思路。只有如此,方可找到解決綜合題的突破口。

          第五,教學(xué)勿忘發(fā)揮板書(shū)的特有功能。板書(shū)通過(guò)學(xué)生的視角器官傳遞信息,比語(yǔ)言富有直觀性。條例清晰,層次分明,邏輯嚴(yán)謹(jǐn)?shù)慕獯疬^(guò)程的板演,不但便于學(xué)生理解、掌握知識(shí),還會(huì)給學(xué)生起到示范作用。

          相信通過(guò)反思教學(xué),優(yōu)化方法,細(xì)化過(guò)程,一定能取得事半功倍之效。

        【《勾股定理》教學(xué)反思】相關(guān)文章:

        勾股定理教學(xué)反思05-17

        勾股定理的教學(xué)反思11-24

        勾股定理教學(xué)反思經(jīng)典(15篇)05-17

        《勾股定理逆定理》的教學(xué)反思04-13

        勾股定理的逆定理數(shù)學(xué)教學(xué)反思10-05

        《勾股定理》說(shuō)課稿06-20

        勾股定理教案05-30

        《勾股定理》說(shuō)課稿06-22

        《勾股定理》優(yōu)秀說(shuō)課稿04-09

        初中勾股定理說(shuō)課稿10-31