高中數(shù)學(xué)教案
作為一位不辭辛勞的人民教師,時常要開展教案準備工作,教案是教學(xué)藍圖,可以有效提高教學(xué)效率。那么問題來了,教案應(yīng)該怎么寫?下面是小編為大家收集的高中數(shù)學(xué)教案,希望對大家有所幫助。
高中數(shù)學(xué)教案1
一、課程性質(zhì)與任務(wù)
數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。
數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識,具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。
二、課程教學(xué)目標
1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識。
2.培養(yǎng)學(xué)生的計算技能、計算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。
3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實踐意識、創(chuàng)新意識和實事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。
三、教學(xué)內(nèi)容結(jié)構(gòu)
本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個部分構(gòu)成。
1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達到的基本要求,教學(xué)時數(shù)為128學(xué)時。
2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實際情況進行選擇和安排教學(xué),教學(xué)時數(shù)為32~64學(xué)時。
3.拓展模塊是滿足學(xué)生個性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時數(shù)不做統(tǒng)一規(guī)定。
四、教學(xué)內(nèi)容與要求
(一)本大綱教學(xué)要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應(yīng)用。
理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其它相關(guān)知識的聯(lián)系。掌握:能夠應(yīng)用知識的`概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)
計算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學(xué)型計算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;
能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。
數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識,運用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進行有條理的思考、判斷、推理和求解;
針對不同的問題(或需求),會選擇合適的模型(模式)。
。ǘ┙虒W(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時)
第1單元集合(10學(xué)時)
第2單元不等式(8學(xué)時)
第6單元數(shù)列(10學(xué)時)
第7單元平面向量(矢量)(10學(xué)時)
第8單元直線和圓的方程(18學(xué)時)
第10單元概率與統(tǒng)計初步(16學(xué)時)
2.職業(yè)模塊
第2單元坐標變換與參數(shù)方程(12學(xué)時)
高中數(shù)學(xué)教案2
教學(xué)目的:
掌握圓的標準方程,并能解決與之有關(guān)的問題
教學(xué)重點:
圓的.標準方程及有關(guān)運用
教學(xué)難點:
標準方程的靈活運用
教學(xué)過程:
一、導(dǎo)入新課,探究標準方程
二、掌握知識,鞏固練習(xí)
練習(xí):
1、說出下列圓的方程
⑴圓心(3,—2)半徑為5
、茍A心(0,3)半徑為3
2、指出下列圓的圓心和半徑
、牛▁—2)2+(y+3)2=3
、苮2+y2=2
⑶x2+y2—6x+4y+12=0
3、判斷3x—4y—10=0和x2+y2=4的位置關(guān)系
4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學(xué)教案3
【教學(xué)目標】
1.知識與技能
(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點】
、俚炔顢(shù)列的概念;
、诘炔顢(shù)列的通項公式
【教學(xué)難點】
、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;
、诘炔顢(shù)列的通項公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設(shè)計思路】
1、教法
、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.
、壑v練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.
2、學(xué)法
引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認識多元的推導(dǎo)思維方法.
【教學(xué)過程】
一、創(chuàng)設(shè)情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學(xué)生:
①0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.
(設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0.
(設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).
2、思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計意圖:強化等差數(shù)列的證明定義法)
四、利用定義,導(dǎo)出通項
1、已知等差數(shù)列:8,5,2,…,求第200項?
2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
(設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)
五、應(yīng)用通項,解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項和第10項
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)
六、反饋練習(xí):教材13頁練習(xí)1
七、歸納總結(jié):
1、一個定義:
等差數(shù)列的定義及定義表達式
2、一個公式:
等差數(shù)列的通項公式
3、二個應(yīng)用:
定義和通項公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充
(設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設(shè)計反思】
本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的`主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.
高中數(shù)學(xué)教案15
【教學(xué)目標】
1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
【教學(xué)重難點】
教學(xué)重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
【教學(xué)過程】
1.情景導(dǎo)入
教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
2.展示目標、檢查預(yù)習(xí)
3、合作探究、交流展示
。1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
。3)提出問題:請列舉身邊的棱柱并對它們進行分類
。4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
。5)讓學(xué)生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
。7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
。1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
。2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
。3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
。4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
。5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
5、典型例題
例1:判斷下列語句是否正確。
、庞幸粋面是多邊形,其余各面都是三角形的幾何體是棱錐。
⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。
答案 A B
6、課堂檢測:
課本P8,習(xí)題1.1 A組第1題。
7.歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
【板書設(shè)計】
一、柱、錐、臺、球的結(jié)構(gòu)
二、例題
例1
變式1、2
【作業(yè)布置】
導(dǎo)學(xué)案課后練習(xí)與提高
1.1.1柱、錐、臺、球的結(jié)構(gòu)特征
課前預(yù)習(xí)學(xué)案
一、預(yù)習(xí)目標:
通過圖形探究柱、錐、臺、球的結(jié)構(gòu)特征
二、預(yù)習(xí)內(nèi)容:
閱讀教材第2—6頁內(nèi)容,然后填空
(1)多面體的概念: 叫多面體,
叫多面體的面, 叫多面體的棱,
叫多面體的頂點。
① 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱
、诶忮F:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐
、劾馀_:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。
(2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。
、賵A柱: 所圍成的幾何體叫做圓柱
、趫A錐: 所圍成的幾何
體叫做圓錐
③圓臺: 的部分叫圓臺
. ④球的定義
思考:
。1)試分析多面體與旋轉(zhuǎn)體有何去別
。2)球面球體有何去別
(3)圓與球有何去別
三、提出疑惑
同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中
疑惑點 疑惑內(nèi)容
高中數(shù)學(xué)教案4
教學(xué)目標
。1)了解線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;
。2)了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的`實際問題;
(3)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建!焙徒鉀Q實際問題的能力;
(4)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識,激勵學(xué)生勇于創(chuàng)新.
重點難點
理解二元一次不等式表示平面區(qū)域是教學(xué)重點。
如何擾實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學(xué)難點。
教學(xué)步驟
。ㄒ唬┮胄抡n
我們已研究過以二元一次不等式組為約束條件的二元線性目標函數(shù)的線性規(guī)劃問題。那么是否有多個兩個變量的線性規(guī)劃問題呢?又什么樣的問題不用線性規(guī)劃知識來解決呢?
高中數(shù)學(xué)教案5
一、教學(xué)目標
【知識與技能】
在掌握圓的標準方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過程與方法】
通過對方程x+y+Dx+Ey+F=0表示圓的的'條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。
【情感態(tài)度與價值觀】
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵學(xué)生創(chuàng)新,勇于探索。
二、教學(xué)重難點
【重點】
掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點】
二元二次方程與圓的一般方程及標準圓方程的關(guān)系。
三、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)舊知,引出課題
1、復(fù)習(xí)圓的標準方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數(shù)學(xué)教案6
[學(xué)習(xí)目標]
。1)會用坐標法及距離公式證明Cα+β;
(2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
。3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學(xué)習(xí)重點]
兩角和與差的正弦、余弦、正切公式
[學(xué)習(xí)難點]
余弦和角公式的推導(dǎo)
[知識結(jié)構(gòu)]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的`三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當(dāng)α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用
高中數(shù)學(xué)教案7
教學(xué)目標:
1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu)
2.能識別和理解簡單的框圖的功能
3.能運用三種基本邏輯結(jié)構(gòu)設(shè)計流程圖以解決簡單的問題
教學(xué)方法:
1.通過模仿、操作、探索,經(jīng)歷設(shè)計流程圖表達求解問題的過程,加深對流程圖的感知
2.在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu)
教學(xué)過程:
一、問題情境
1.情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:xx)為行李的重量.
2.試給出計算費用(單位:xx元)的一個算法,并畫出流程圖
二、學(xué)生活動
學(xué)生討論,教師引導(dǎo)學(xué)生進行表達
三、建構(gòu)數(shù)學(xué)
1.選擇結(jié)構(gòu)的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu)
虛線框內(nèi)是一個選擇結(jié)構(gòu),它包含一個判斷框,當(dāng)條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行
2.說明:
(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計;
(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的`條件進行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和兩個退出點。
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
高中數(shù)學(xué)教案8
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。
四、教學(xué)目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
五、教學(xué)重點與難點:
教學(xué)重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點:
巧用圓錐曲線定義解題
六、教學(xué)過程設(shè)計
【設(shè)計思路】
(一)開門見山,提出問題
一上課,我就直截了當(dāng)?shù)亟o出例題1:
(1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設(shè)計意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個距離公式。
在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2:
(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2),求|PA|
【設(shè)計意圖】
運用圓錐曲線定義中的數(shù)量關(guān)系進行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。
【學(xué)情預(yù)設(shè)】
根據(jù)以往的經(jīng)驗,多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關(guān)鍵在于能準確寫出點A的軌跡,有了練習(xí)題1的鋪墊,這個問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗的機會。
練習(xí):
設(shè)點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設(shè)計意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺,當(dāng)然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的.應(yīng)用舉例
1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。
2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F(xiàn)1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。
3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。
4、例題:
(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當(dāng)|AM||MF|最小時,求M點的坐標。
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。
七、教學(xué)反思
1、本課將借助于,將使全體學(xué)生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學(xué),節(jié)省了板演的時間,從而給學(xué)生留出更多的時間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結(jié)合的教學(xué)優(yōu)勢。
2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實上,學(xué)生們的思維運動量并不會小。
總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識,自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實踐的機會,能夠使學(xué)生在學(xué)習(xí)新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。
高中數(shù)學(xué)教案9
教學(xué)目的:掌握圓的標準方程,并能解決與之有關(guān)的問題
教學(xué)重點:圓的標準方程及有關(guān)運用
教學(xué)難點:標準方程的靈活運用
教學(xué)過程:
一、導(dǎo)入新課,探究標準方程
二、掌握知識,鞏固練習(xí)
練習(xí):⒈說出下列圓的方程
、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3
、仓赋鱿铝袌A的圓心和半徑
⑴(x-2)2+(y+3)2=3
、苮2+y2=2
⑶x2+y2-6x+4y+12=0
、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系
、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的`方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學(xué)教案10
高中數(shù)學(xué)趣味競賽題(共10題)
1 、撒謊的有幾人
5個高中生有,她們面對學(xué)校的新聞采訪說了如下的話:
愛:“我還沒有談過戀愛! 靜香:“愛撒謊了!
瑪麗:“我曾經(jīng)去過昆明! 惠美:“瑪麗在撒謊!
千葉子:“瑪麗和惠美都在撒謊! 那么,這5個人之中到底有幾個人在撒謊呢?
2、她們到底是誰
有天使、惡魔、人三者,天使時刻都說真話,惡魔時時刻刻都說假話,人呢,有時候說真話,有時候說假話。
穿黑色衣服的女子說:“我不是天使! 穿藍色衣服的女子說:“我不是人! 穿白色衣服的女子說:“我不是惡魔!蹦敲矗@三人到底分別是誰呢?
3、半只小貓
聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家。可是,只剩下1只小貓了。
“一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽說以后,馬上來買走了所有小貓的一半和半只! “半只?”“是啊,然后,鄰居家的老奶奶無論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?
4、被蟲子吃掉的算式
一只愛吃墨水的.蟲子把下圖的算式中的數(shù)字全部吃掉了。當(dāng)然,沒有數(shù)字的部分它沒有吃(因為沒有墨水)。
那么,請問原來的算式是什么樣子的呢?
5、巧動火柴
用16根火柴擺成5個正方形。請移動2根火柴,
使
正形變成4。
6、折過來的角
把正三角形的紙如圖那樣折過來時,角?的度數(shù)是多少度?
7、星形角之和
求星形尖端的角度之和。
8、!雙胞胎?
丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財產(chǎn)的 2/3 、如果生的是女孩就給他財產(chǎn)的 2/5 、剩下的給妻子。
結(jié)果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個人怎么分財產(chǎn)好呢?
9、贈送和降價哪個更好?
1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?
10、折成15度
用折紙做成45度很簡單是吧。那么,請折成15度,你會嗎?
高中數(shù)學(xué)教案11
一、什么是教學(xué)案例
教學(xué)案例是真實而又典型且含有問題的事件。簡單地說,一個教學(xué)案例就是一個包含有疑難問題的實際情境的描述,是一個教學(xué)實踐過程中的故事,描述的是教學(xué)過程中“意料之外,情理之中的事”。
這可以從以下幾個層次來理解:
教學(xué)案例是事件:教學(xué)案例是對教學(xué)過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對教學(xué)現(xiàn)象的動態(tài)性的把握。
教學(xué)案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內(nèi),并且也可能包含有解決問題的方法在內(nèi)。正因為這一點,案例才成為一種獨特的研究成果的表現(xiàn)形式。
案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實再現(xiàn)。是對“當(dāng)前”課堂中真實發(fā)生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。
二、如何進行教學(xué)案例研究
教學(xué)案例是教師教學(xué)行為真實、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進行教學(xué)案例的研究是教師不斷反思、改進自己教學(xué)的一種方法,能促使教師更為深刻地認識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。
那么如何進行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個環(huán)節(jié):案例研究的準備及實施、案例研究報告的撰寫與反思。
(一)案例研究的準備與實施
1.研究主題的選擇
案例研究都要有研究的重點和主題,這個主題常與教學(xué)改革的核心理念、常見的疑難問題和困惑事件相關(guān),一般來說可以從教學(xué)的各個方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問、教學(xué)媒體的使用、教學(xué)評價語言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習(xí)方式確定主題——探究性學(xué)習(xí)、問題解決學(xué)習(xí)、合作學(xué)習(xí)、實踐性活動等。另外從學(xué)科特點、教學(xué)內(nèi)容等都可以確定研究的主題。
研究者要了解當(dāng)前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標準》和有針對性地作一些理論準備。還要通過有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計,進行訪談等),同時初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。
一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發(fā)現(xiàn)更有潛力?選擇的事件對學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過去成功的行為嗎?事件呈現(xiàn)的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關(guān)的問題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習(xí)、內(nèi)省和深層次理解方面就可能更加富有成效。
高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的'培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習(xí)規(guī)律的探究:如數(shù)學(xué)學(xué)習(xí)習(xí)慣、解決問題的思維方式、獨立思考與合作學(xué)習(xí)等;(3)教師專業(yè)知識的提升:如數(shù)學(xué)板書與電子屏幕的展示對學(xué)生思維的影響、數(shù)學(xué)語言的訓(xùn)練對人們思維的影響、數(shù)學(xué)知識模式化教學(xué)的優(yōu)劣等。
2.案例研究的基本方法
(1)課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學(xué)活動的自然狀態(tài)下,用自己的感官和輔助工具對研究對象進行觀察研究的一種方法。它可以是教師自己對教學(xué)對象——學(xué)生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學(xué)實錄、教學(xué)程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學(xué)時間分配表等,以便以后繼續(xù)分析案例提供翔實的原始材料。
(2)訪談與調(diào)查。對一些課堂教學(xué)不能觀察到的師生內(nèi)心活動,如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運用以及教學(xué)達標的成效等一些需要進一步了解的問題,可以通過與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實課堂教學(xué)觀察的材料;對學(xué)生在課堂教學(xué)活動中回答問題的心理狀態(tài)、解題思路等問題,也可以在課后做一些問卷調(diào)查;對學(xué)生達標的成度、效度,也可以作一些測試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個教學(xué)環(huán)節(jié)中出現(xiàn)問題,從中提煉出解決問題的對策。
(3)文獻分析。文獻分析是通過查閱文獻資料,從過去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強案例分析的說服力。當(dāng)然,對廣大第一線教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過有關(guān)教育理論文獻的查閱,去進一步解讀課堂教學(xué)的活動,挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過學(xué)生的動手操作來獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關(guān)文獻資料,從學(xué)習(xí)中提高研究者自身的理論水平。
(二)案例研究報告的撰寫
1.常見的案例報告格式
撰寫教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當(dāng)前,國內(nèi)外課堂教學(xué)案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關(guān)鍵教學(xué)事件等的分析。
下面介紹兩種常用的案例編寫的格式:
(1)“描述+分析”式
此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動的情景,后半部分主要針對情景中的一個問題進行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動中的某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學(xué)疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發(fā)表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對關(guān)鍵教學(xué)事件的正確把握。
(2)“背景+描述+問題+詮釋”式
此格式是一種要求比較高的編寫格式,而且,它在實際教學(xué)中的作用也更大。通常它將整個案例分為四個部分:
A.主題與背景
主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點、時間、人物的一些基本情況。當(dāng)然,這部分的內(nèi)容不宜很長,只需提綱挈領(lǐng)敘述清楚即可。
B.情景描述
與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動。
C.問題討論
這是根據(jù)主題要求與情景描述,進行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識的要點、教學(xué)法和情景特點以及案例的說明與注意事項。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認識水平與學(xué)生主動學(xué)習(xí)的能力。不同的教學(xué)觀念,不同的教學(xué)手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。
D.詮釋與研究
這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實錄以及教學(xué)活動背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們常看到這樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標,反之教師期望的目標學(xué)生沒有達到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運用與學(xué)生內(nèi)在動機的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。
2.案例報告撰寫的關(guān)鍵
(1)掌握四個原則。要寫好教學(xué)案例,除了平時多積累素材,學(xué)習(xí)他人的案例作品以提高寫作技巧外,還應(yīng)把握以下四點:
A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動向、把握適合時代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習(xí)的難點和重點,尋找數(shù)學(xué)教師專業(yè)發(fā)展的途徑與規(guī)律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學(xué)活動實錄,要反映事件發(fā)生的過程,重點描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。
案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發(fā)現(xiàn)。來源于實踐的教學(xué)案例并非都有同等價值,關(guān)鍵要看撰寫者對實踐的發(fā)展與理論的升華程度,包括對題目的推敲。如有的教學(xué)案例重點描述了有戲劇性的情節(jié),用了“細節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長》、《捕捉資源因勢利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實踐證明,在寫作案例時,選擇有感悟、有新意的內(nèi)容,在明確主題,恰當(dāng)擬題后再動筆,才能寫出高質(zhì)量的案例。
B.理論性原則:解決問題的策略中應(yīng)當(dāng)蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點撥,師生心理、行為變化情況等,無不體現(xiàn)教師的教學(xué)思想和教育基本原理。
C.敘事性原則:案例報告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動的事實為主要情節(jié),可以夾敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個主題的幾節(jié)課的情景片段。
D.學(xué)科性原則:數(shù)學(xué)案例報告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標準,滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習(xí)慣。就是撰寫者的教育思想和教育理念在教學(xué)實踐中具體體現(xiàn)。
(2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:
A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實錄,包括教師和學(xué)生的一言一行。陳述時,根據(jù)操作程序作一點“簡評”,最后作“總評”。
B.以案說理:對教學(xué)過程進行陳述時,舍去與文題不相關(guān)或不重要的部分,并強化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長篇幅的理性思考。
C.圖表展示法:用圖表進行統(tǒng)計的形式體現(xiàn)撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問題的質(zhì)量等多個問題,都可以在一張或數(shù)張圖表上用百分比或個(次)數(shù)進行統(tǒng)計。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫者的教學(xué)理念進行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。
D.分析討論法:在撰寫時,應(yīng)汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進一步思考的問題。
3.優(yōu)秀案例的特征
(1)時代性:一個好的案例描述的是現(xiàn)實生活場景——案例的敘述要把事件置于一個時空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問題為著眼點,至少應(yīng)該是近年發(fā)生的事情,展示的整個事實材料應(yīng)該與整個時代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產(chǎn)生移情作用。
(2)真實性:一個好的案例應(yīng)該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應(yīng)注明資料來源。
(3)適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細過程,這應(yīng)該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。
(4)反思性:一個好的案例需要有對已經(jīng)做出的解決問題的決策的評價——評價是為了給新的決策提供參考點?稍诎咐拈_頭或結(jié)尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。
三、案例研究過程中需注意的問題
1.選材面過窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說明問題,或者在一節(jié)課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認識不夠。
2.缺乏典型性。有的案例對教學(xué)實踐沒有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現(xiàn)象的分析、處理、詮釋,達到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。
3.主題不明確。主要體現(xiàn)為:
(1)主題渙散。有的案例象記流水帳,沒有根據(jù)需要進行恰當(dāng)?shù)娜∩,看不出作者要反映、探討什么問題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。
(2)定題過于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。
4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強案例的可讀性和指導(dǎo)性。如寫成一般的教學(xué)設(shè)計,一般包括“備課思路、教學(xué)目標、教學(xué)重點、教學(xué)方法、課前準備、教學(xué)內(nèi)容、教學(xué)過程”等內(nèi)容;寫成教學(xué)實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創(chuàng)新,平淡無趣,看不出案例研究和反映的問題。
5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。
高中數(shù)學(xué)教案12
教學(xué)目標
1使學(xué)生理解本章的知識結(jié)構(gòu),并通過本章的知識結(jié)構(gòu)掌握本章的全部知識;
2對線段、射線、直線、角的概念及它們之間的關(guān)系有進一步的認識;
3掌握本章的全部定理和公理;
4理解本章的數(shù)學(xué)思想方法;
5了解本章的題目類型。
教學(xué)重點和難點
重點是理解本章的知識結(jié)構(gòu),掌握本章的全部定和公理;難點是理解本章的數(shù)學(xué)思想方法。
教學(xué)設(shè)計過程
一、本章的知識結(jié)構(gòu)
二、本章中的概念
1直線、射線、線段的概念。
2線段的中點定義。
3角的兩個定義。
4直角、平角、周角、銳角、鈍角的概念。
5互余與互補的角。
三、本章中的公理和定理
1直線的公理;線段的公理。
2補角和余角的性質(zhì)定理。
四、本章中的主要習(xí)題類型
1對直線、射線、線段的概念的理解。
例1下列說法中正確的是( )。
A延長射線OP B延長直線CD
C延長線段CD D反向延長直線CD
解:C因為射線和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯誤的。而線段有兩個端點,可以向兩方延長。
例2如圖1-57中的線段共有多少條?
解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,F(xiàn)G。
2線段的和、差、倍、分。
例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD= BC,那么線段AD是線段AC的( )。
A.B. C. D.
解:B如圖1-58,因為AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。
例4如圖1-59,B為線段AC上的一點,AB=4cm,BC=3cm,M,N分別為AB,BC的中點,求MN的長。
解:因為AB=4,M是AB的中點,所以MB=2,又因為N是BC的中點,所以BN=1.5。則MN=2+1.5=3.5
3角的概念性質(zhì)及角平分線。
例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的度數(shù)。
解:因為OD是∠AOB的平分線,所以∠BOD= ∠AOB;又因為OE是∠BOC的平分線,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,
所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。
則∠EOD=90°。
例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數(shù)的比是多少?
解:因為∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。
又∠COD=90°,所以∠COB=30°。
則∠AOC=60°,(同角的余角相等)
∠AOC與∠COB的度數(shù)的比是2∶1。
4互余與互補角的性質(zhì)。
例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數(shù)。
解:因為COD為直線,∠BOE=90°,∠BOD=45°,
所以∠COE=180°-90°-45°=45°
又AOB為直線,∠BOE=90°,∠COE=45°
故∠COA=180°-90°-45°=45°,
而AOB為直線,∠BOD=45°,
因此∠AOD=180°-45°=135°。
例8一個角是另一個角的3倍,且小有的余角與大角的余角之差為20°,求這兩個角的.度數(shù)。
解:設(shè)第一個角為x°,則另一個角為3x°,
依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。
答:一個角為10°,另一個角為30°。
5度分秒的換算及和、差、倍、分的計算。
例9 (1)將4589°化成度、分、秒的形式。
(2)將80°34′45″化成度。
(3)計算:(36°55′40″-23°56′45″)。
解:(1)45°53′24″。
(2)約為8058°。
(3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進位,做除法后得9°44′11″)
五、本章中所學(xué)到的數(shù)學(xué)思想
1運動變化的觀點:幾何圖形不是孤立和靜止的,也應(yīng)看作不斷發(fā)展和變化的,如線段向一個方向延長,就發(fā)展成為射線;射線向另一方向延長就發(fā)展成直線。又如射線饒它的端點旋轉(zhuǎn)就形成角;角的終邊不斷旋轉(zhuǎn)就變化成直角、平角和周角。從圖形的運動中可以看到變化,從變化中看到聯(lián)系和區(qū)別及特性。
2數(shù)形結(jié)合的思想:在幾何的知識中經(jīng)常遇到計算問題,對形的研究離不開數(shù)。正如數(shù)學(xué)家華羅庚所說:“數(shù)缺形時少直觀,形缺數(shù)時難如微”。本章的知識中,將線段的長度用數(shù)量表示,利用方程的方法解決余角與補角的問題。因此我們對幾何的學(xué)習(xí)不能與代數(shù)的學(xué)習(xí)截然分開,在形的問題難以解決時,發(fā)揮數(shù)的功能,在數(shù)的問題遇到困難時,畫出與它相關(guān)的圖形,都會給問題的解決帶來新的思路。從幾何的起始課,就注意數(shù)形結(jié)合,就會養(yǎng)成良好的思維習(xí)慣。
3聯(lián)系實際,從實際事物中抽象出數(shù)學(xué)模型。數(shù)學(xué)的產(chǎn)生來源于生產(chǎn)和生活實踐,因此學(xué)習(xí)數(shù)學(xué)不能脫離實際生活,尤其是幾乎何的學(xué)習(xí)更離不開實際生活。一方面要讓學(xué)生知道本章的主要內(nèi)容是線和角,都在生活中有大量的原型存在,另一方面又要引導(dǎo)學(xué)生將所學(xué)的知識去解決某些簡單的實際問題,這才是理論聯(lián)系實際的觀點。
六、本章的疑點和誤點分析
概念在應(yīng)用中的混淆。
例10判斷正誤:
(1)在∠AOB的邊OA的延長線上取一點D。
(2)大于90°的角是鈍角。
(3)任何一個角都可以有余角。
(4)∠A是銳角,則∠A的所有余角都相等。
(5)兩個銳角的和一定小于平角。
(6)直線MN是平角。
(7)互補的兩個角的和一定等于平角。
(8)如果一個角的補角是銳角,那么這個角就沒有余角。
(9)鈍角一定大于它的補角。
(10)經(jīng)過三點一定可以畫一條直線。
解:(1)錯。因為角的兩邊是射線,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。
(2)錯。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。
(3)錯。余角的定義是:如果兩個角的和是一個直角,這兩個角互為余角。因此大于直角的角沒有余角。
(4)對.∠A的所有余角都是90°-∠A。
(5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.
(6)錯。平角是一個角就要有頂點,而直線上沒有表示平角頂點的點。如果在直線上標出表示角的頂點的點,就可以了。
(7)對。符合互補的角的定義。
(8)對。如果一個角的補角是銳角,那么這個角一定是鈍角,而鈍角是沒有余角的。
(9)對。因為鈍角的補角是銳角,鈍角一定大于銳角。
(10)錯。這個題應(yīng)該分情況討論:如果這三點在同一條直線上,這個結(jié)論是正確的。如果這三個點不在同一條直線上,那么過這三個點就不能畫一條直線。
板書設(shè)計
回顧與反思
(一)知識結(jié)構(gòu)(四)主要習(xí)題類型(五)本章的數(shù)學(xué)思想
略例1 1
· 2
(二)本章概念· 3
略· (六)疑誤點分析
(三)本章的公理和定理·
例9
高中數(shù)學(xué)教案13
1.教學(xué)目標
(1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.
(2)能力目標: 1.進一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;
2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強學(xué)生用數(shù)學(xué)的意識.
(3)情感目標:培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點.難點
(1)教學(xué)重點:圓的標準方程的求法及其應(yīng)用.
(2)教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標準方程以及選擇恰
當(dāng)?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題.
3.教學(xué)過程
(一)創(chuàng)設(shè)情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
[引導(dǎo)] 畫圖建系
[學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。
(二)深入探究(獲得新知)
問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學(xué)生活動] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標法
如圖,設(shè)m(x,y)是圓上任意一點,根據(jù)定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}
由兩點間的距離公式,點m適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
i.直接應(yīng)用(內(nèi)化新知)
問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過點 ,圓心在點 .
2.根據(jù)圓的'方程寫出圓心和半徑
(1) ; (2) .
ii.靈活應(yīng)用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點 的切線方程.
[學(xué)生活動]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .
iii.實際應(yīng)用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實際問題情境]
(四)反饋訓(xùn)練(形成方法)
問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.
3.求圓x2 y2=13過點(-2,3)的切線方程.
4.已知圓的方程為 ,求過點 的切線方程.
高中數(shù)學(xué)教案14
教材分析:
前面已學(xué)習(xí)了向量的概念及向量的線性運算,這里引入一種新的向量運算——向量的數(shù)量積。教科書以物體受力做功為背景引入向量數(shù)量積的概念,既使向量數(shù)量積運算與學(xué)生已有知識建立了聯(lián)系,又使學(xué)生看到向量數(shù)量積與向量模的大小及夾角有關(guān),同時與前面的向量運算不同,其計算結(jié)果不是向量而是數(shù)量。
在定義了數(shù)量積的概念后,進一步探究了兩個向量夾角對數(shù)量積符號的影響;然后由投影的概念得出了數(shù)量積的`幾何意義;并由數(shù)量積的定義推導(dǎo)出一些數(shù)量積的重要性質(zhì);最后“探究”研究了運算律。
教學(xué)目標:
(一)知識與技能
1.掌握數(shù)量積的定義、重要性質(zhì)及運算律;
2.能應(yīng)用數(shù)量積的重要性質(zhì)及運算律解決問題;
3.了解用平面向量數(shù)量積可以解決長度、角度、垂直共線等問題,為下節(jié)課靈活運用平面向量數(shù)量積解決問題打好基礎(chǔ)。
(二)過程與方法
以物體受力做功為背景引入向量數(shù)量積的概念,從數(shù)與形兩方面引導(dǎo)學(xué)生對向量數(shù)量積定義進行探究,通過例題分析,使學(xué)生明確向量的數(shù)量積與數(shù)的乘法的聯(lián)系與區(qū)別。
(三)情感、態(tài)度與價值觀
創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從物理學(xué)中“功”這個概念引入課題,開始就激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生容易切入課題,培養(yǎng)學(xué)生用數(shù)學(xué)的意識,加強數(shù)學(xué)與其它學(xué)科及生活實踐的聯(lián)系。
教學(xué)重點:
1.平面向量的數(shù)量積的定義;
2.用平面向量的數(shù)量積表示向量的模及向量的夾角。
教學(xué)難點:
平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用。
教學(xué)方法:
啟發(fā)引導(dǎo)式
教學(xué)過程:
(一)提出問題,引入新課
前面我們學(xué)習(xí)了平面向量的線性運算,包括向量的加法、減法、以及數(shù)乘運算,它們的運算結(jié)果都是向量,既然兩個向量可以進行加法、減法運算,我們自然會提出:兩個向量是否能進行“乘法”運算呢?如果能,運算結(jié)果又是什么呢?
這讓我們聯(lián)想到物理中“功”的概念,即如果一個物體在力F的作用下產(chǎn)生位移s,F(xiàn)與s的夾角是θ,那么力F所做的功如何計算呢?
我們知道:W=|F||s|cosθ,功是一個標量(數(shù)量),而力它等于力F和位移s都是矢量(向量),功等于力和位移這兩個向量的大小與它們夾角余弦的乘積。這給我們一種啟示:能否把功W看成是兩向量F和s的一種運算的結(jié)果呢,為此我們引入平面向量的數(shù)量積。
(二)講授新課
今天我們就來學(xué)習(xí):(板書課題)
高中數(shù)學(xué)教案15
一、課程性質(zhì)與任務(wù)
數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。
數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識,具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。
二、課程教學(xué)目標
1、在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識。
2、培養(yǎng)學(xué)生的計算技能、計算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。
3、引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實踐意識、創(chuàng)新意識和實事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。
三、教學(xué)內(nèi)容結(jié)構(gòu)
本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個部分構(gòu)成。
1、基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達到的基本要求,教學(xué)時數(shù)為128學(xué)時。
2、職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實際情況進行選擇和安排教學(xué),教學(xué)時數(shù)為32~64學(xué)時。
3、拓展模塊是滿足學(xué)生個性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時數(shù)不做統(tǒng)一規(guī)定。
四、教學(xué)內(nèi)容與要求
(一)本大綱教學(xué)要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應(yīng)用。
理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其它相關(guān)知識的聯(lián)系。掌握:能夠應(yīng)用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)
計算技能:根據(jù)法則、公式,或按照一定的.操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學(xué)型計算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;
能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。
數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識,運用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進行有條理的思考、判斷、推理和求解;
針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時)
第1單元集合(10學(xué)時)
第2單元不等式(8學(xué)時)
第6單元數(shù)列(10學(xué)時)
第7單元平面向量(矢量)(10學(xué)時)
第8單元直線和圓的方程(18學(xué)時)
第10單元概率與統(tǒng)計初步(16學(xué)時)
2、職業(yè)模塊
第2單元坐標變換與參數(shù)方程(12學(xué)時)
【高中數(shù)學(xué)教案】相關(guān)文章:
[經(jīng)典]小學(xué)數(shù)學(xué)教案07-30
數(shù)學(xué)教案模板11-09
人教版數(shù)學(xué)教案11-28
小學(xué)數(shù)學(xué)教案【經(jīng)典】09-10
小學(xué)數(shù)學(xué)教案[精選]08-27
[精選]小學(xué)數(shù)學(xué)教案09-07