- 相關(guān)推薦
二元一次不等式教學(xué)設(shè)計
作為一名教職工,時常需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計是一個系統(tǒng)設(shè)計并實現(xiàn)學(xué)習(xí)目標(biāo)的過程,它遵循學(xué)習(xí)效果最優(yōu)的原則嗎,是課件開發(fā)質(zhì)量高低的關(guān)鍵所在。那么寫教學(xué)設(shè)計需要注意哪些問題呢?下面是小編整理的二元一次不等式教學(xué)設(shè)計,希望能夠幫助到大家。
二元一次不等式教學(xué)設(shè)計1
教學(xué)目標(biāo)
1、認識二元一次方程和二元一次方程組.
2、了解二元一次方程和二元一次方程組的解,會求二元一次方程的正整數(shù)解.
重點、難點
重點:理解二元一次方程組的解的意義
難點:求二元一次方程的正整數(shù)解
教學(xué)過程
一、復(fù)習(xí)導(dǎo)入
什么是一元一次方程?“元”指什么?“次”指什么?
什么是方程的解?
設(shè)計意圖:通過學(xué)生復(fù)習(xí)以前的內(nèi)容,知道用元與次的含義,為這節(jié)課所學(xué)的二元一次方程組奠定基礎(chǔ)。
二、觀看視頻
觀看洋蔥視頻關(guān)于二元一次方程組的內(nèi)容,通過熟悉的雞兔同籠問題來引發(fā)思考。
視頻內(nèi)容
設(shè)計意圖:用視頻吸引學(xué)生注意力,引起學(xué)生的認知沖突,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,通過視頻內(nèi)容,學(xué)生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學(xué)習(xí)動力,此時我把學(xué)生帶入下一環(huán)節(jié)。
三、探究新知
根據(jù)視頻內(nèi)容歸納出二元一次方程的定義:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程.
把兩個二元一次方程合在一起,就組成了一個二元一次方程組.
提問:對比兩個方程,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?
師生共同總結(jié)二元一次方程組的概念像這樣方程組中有兩個個未知數(shù),含有每個未知數(shù)的項的次數(shù)都是1,并且一共有兩個方程,像這樣的方程組叫做二元一次方程組.
探究二元一次方程組的解:
滿足x+y=10的值有哪些?請?zhí)钊氡碇校?/p>
使二元一次方程兩邊相等的未知數(shù)的值,叫做二元一次方程的解,記作.
滿足方程2x+y=16且符合問題的實際意義的x 、y的值如下表:
不難發(fā)現(xiàn)x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是說是這兩個方程的公共解,我們把它們叫做方程組的解。
歸納二元一次方程組的解的定義:二元一次方程組中的兩個方程的公共解叫做二元一次方程組的解.
思考:3x+y=10的解有多少個?一個解有幾個數(shù)?正整數(shù)解有幾個?
帶著問題讓學(xué)生觀看洋蔥數(shù)學(xué)視頻二元一次方程組的解
視頻內(nèi)容
設(shè)計意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識的教學(xué)必須在學(xué)生自主探索,經(jīng)驗歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過學(xué)習(xí)用坐標(biāo)表示平移觀察分析、獨立思考、小組交流等活動,引導(dǎo)學(xué)生歸納。
四、例題講解
例、若方程2x2m+3+3y3n-7=0是關(guān)于x、y的二元一次方程,求m+n的值。
例2、暴風(fēng)雨即將來臨,一群螞蟻正忙著搬家.其中有大螞蟻和小螞蟻,已知大小螞蟻總共有1 00只,小螞蟻一次只能搬一粒食物,大螞蟻一次能搬兩粒,一場忙碌過后,洞里的160粒食物剛好一次被安全轉(zhuǎn)移,求大小螞蟻各有幾只?
例3、
學(xué)生思考,試著解答,最后共同宣布答案。
設(shè)計意圖:在例題講解過程中,讓學(xué)生充分活動起來,通過例題探究來進行總結(jié),不要讓學(xué)生死記硬背,重點在理解,會靈活運用。
五、隨堂練習(xí)
1.下列方程中,是二元一次方程的是( )
A.3x-2y=4z B.6xy+9=0
C.+4y=6 D.4x=
2.下列方程組中,是二元一次方程組的是( )
A. B.
C. D.
3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程為關(guān)于x,y的二元一次方程,則k值為( )
A.-2 B.2或-2 C.2 D.以上答案都不對
4.二元一次方程x-2y=1有無數(shù)多個解,下列四組值中不是該方程的解的是( )
A、B、C、D、
5.二元一次方程組的解為( )
A. B. C. D.
6.為了開展陽光體育活動,某班計劃購買毽子和跳繩兩種體育用品,共花費35元,毽子單價3元,跳繩單價5元,購買方案有( )
A.1種B.2種C.3種D.4種
設(shè)計意圖:幾道練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),升華知識
六、拓展延伸
1.有大小兩種貨車,2輛大貨車與3輛小貨車一次可以運貨15.5噸,5輛大貨車與6輛小貨車一次可以運貨35噸,設(shè)一輛大貨車一次可以運貨x噸,一輛小貨車一次可以運貨y噸,根據(jù)題意所列方程組正確的是( )
A. B.
C. D.
2.甲、乙兩人共同解方程組由于甲看錯了方程①中的a,得到方程組的解為乙看錯了方程②中的b,得到方程組的.解為試計算a2 016+(-b)2 017.
設(shè)計意圖:這個環(huán)節(jié)是鞏固本課知識點,通過設(shè)置練習(xí),來檢測學(xué)生的掌握情況,在這部分的設(shè)計中,主要是發(fā)揮學(xué)生作為教學(xué)主體的主動性,讓學(xué)生感受學(xué)習(xí)的樂趣和成功的喜悅。
七、課堂小結(jié)
以提問進行:
。1)、二元一次方程(組)的特征是什么?
。2)、二元一次方程組的解要滿足什么條件?
設(shè)計意圖:通過共同小結(jié)使學(xué)生歸納、梳理總結(jié)本節(jié)的知識、技能、方法,將本課所學(xué)的知識與以前所學(xué)的知識進行緊密聯(lián)結(jié),再一次突出本節(jié)課的學(xué)習(xí)重點,改善學(xué)生的學(xué)習(xí)方式。有利于培養(yǎng)學(xué)生數(shù)學(xué)思想、數(shù)學(xué)方法、數(shù)學(xué)能力和對數(shù)學(xué)的積極情感.同時為以后的學(xué)習(xí)作知識儲備.
八、教學(xué)反思
1.概念課教學(xué)模式:本節(jié)課的主要內(nèi)容是二元一次方程(組)的有關(guān)概念,設(shè)計時按照“實例研究,初步體會——比較分析,把握實質(zhì)——歸納概括,形成定義——應(yīng)用提高,發(fā)展能力”的思路進行,讓學(xué)生體會到是因為“需要”而學(xué)習(xí)新知識,逐步滲透應(yīng)用意識。
2.類比法的運用:二元一次方程及其解的意義類比一元一次方程學(xué)習(xí),一方面加深學(xué)生對于方程中“元”與“次”的理解,另一方面易于理清一元一次方程與二元一次方程“解”的相關(guān)知識的異同,同時為二元一次方程組相關(guān)概念掃清障礙。
3.分層遞進,循環(huán)上升:學(xué)生對知識的理解,教師對學(xué)生的要求,都是由低到高,逐步提升,題目的設(shè)計從單一知識點的直接運用,逐漸到多個知識點的靈活運用,給學(xué)生設(shè)計必要的臺階,使其一步步向前,最終達到教學(xué)目標(biāo)。
二元一次不等式教學(xué)設(shè)計2
一.教學(xué)內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用.
必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個課時,本節(jié)課是第一課時,教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運用具有重要的作用.許多問題的解決都會借助一元二次不等式的解法.因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標(biāo)定位.
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個層面的教學(xué)目標(biāo).第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標(biāo),培養(yǎng)學(xué)生運用數(shù)形結(jié)合與分類討論等數(shù)學(xué)思想方法解決問題的能力,提高運算和作圖能力.第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認識,向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 3.教學(xué)重點、難點確定.
本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.
二.教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動.我設(shè)計了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問題,③合作交流,探究新知,④數(shù)學(xué)運用,深化認知,⑤練習(xí)檢測,反饋新知,⑥談?wù)勈斋@,強化思想,⑦布置作業(yè),實踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié).
三.教學(xué)過程分析:
。ㄒ唬┞(lián)系舊知,構(gòu)建新知
設(shè)置一系列的問題喚起學(xué)生對舊知識的回憶.
問題1:一元二次方程的解法有哪些呢?
(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準備.)
問題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?
。ㄒ鈭D:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開口方向由二次項系數(shù)決定,為突出重點做準備)
。ǘ﹦(chuàng)設(shè)情景,提出問題
1、讓學(xué)生動手畫直角坐標(biāo)系,然后沿x軸方向上下對折這張紙,觀察它們的值有什么特點?
22、請在剛才的坐標(biāo)系中畫出y=x-7x+6的圖像
問題1:
。1)x軸上方有無圖像?若有請用紅線描出。這部分圖像對應(yīng)的y值如何?
。2)x軸下方有無圖像?若有請用藍線描出。這部分圖像對應(yīng)的y值如何?
。3)紅線與藍線有無交點?若有請用綠色標(biāo)出。
。4)你能找出上述各種情況的x的取值范圍嗎?請在圖中寫出。
問題2:你能說一說這兩個不等式有何共同特點么?
。1)含有一個未知數(shù)x;
。2)未知數(shù)的最高次數(shù)為2。通過兩問題得出一元二次不等式的概念:一般地,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。
問題3:判斷下列式子是不是一元二次不等式?
問題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?
一元二次方程的解即一元二次函數(shù)圖象與x軸交點的橫坐標(biāo),也就是說方程的解即對應(yīng)函數(shù)的零點。
問題5:一元二次不等式如何求解呢?
。ㄈ┖献鹘涣,探究新知
1. 探究一元二次不等式x2x20的'解.
容易知道:一元二次方程x2x20的有兩個實數(shù)根:x11或x22. 二次函數(shù)yx2x2與x軸有兩個交點:1,0和2,0. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當(dāng)x為何值時,y0;
當(dāng)x為何值時,y0; 當(dāng)x為何值時,y0.
。ㄔO(shè)計意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強對圖象的認識,從而加強數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強學(xué)生理解一元二次不等式的解相關(guān)的三個因素;④為歸納解一元二次不等式做好準備.根據(jù)前面探討的問題引導(dǎo)學(xué)生歸納一元二次不等式的解.)
2. 探究一元二次不等式ax2bxc0或ax2bxc0a0的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:
2拋物線yaxbxc與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2bxc=0的根的情況,而一元二次方程根的情況是由判別式b4ac三 3 種取值情況(0,0,0)來確定.
。ㄔO(shè)計意圖:這里我將運用多媒體圖標(biāo)的形式來展現(xiàn)出其解法思路,學(xué)生有一個完整的邏輯思維,讓學(xué)生在探究中建立知識間的聯(lián)系,體會數(shù)形結(jié)合,強調(diào)突出本節(jié)的難點.)
。ㄋ模⿺(shù)學(xué)運用,深化認知.
2例1.求不等式2x3x20的解集. 2變式為:求不等式2x3x20的解集.
2例2.解不等式x2x30.
。ㄔO(shè)計意圖:先讓學(xué)生來解答例題,若教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚.)總結(jié):
解一元二次不等式的步驟:
一化:化二次項前的系數(shù)為正(a>0).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.(五)練習(xí)檢測,鞏固收獲
。ㄔO(shè)計意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來及時組織學(xué)生進行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問題共同糾正.)
。w納小結(jié),強化思想
設(shè)計意圖:梳理本節(jié)課的知識點,總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫圖,五寫解集”的口訣來幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴謹?shù)淖鲱}方法,知曉本節(jié)課的重難點.
。ㄆ撸┎贾米鳂I(yè),拓展延伸
必做題:課本第80頁習(xí)題A組 1,2.選做題:
。1)若關(guān)于m的一元二次方程x
2(m1)xm0有兩個不相 等的實數(shù)根,求m的取值范圍.2
。2)已知不等式xaxb0的解集為x2x3,求a,b的
值.(設(shè)計意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的反饋,選做題是對本節(jié)課知識的延伸,整體的設(shè)計意圖是反饋教學(xué),鞏固提高.)
四.教學(xué)總結(jié)
本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時刻關(guān)注學(xué)生的活動過程,不時給予引導(dǎo),及時糾正.
二元一次不等式教學(xué)設(shè)計3
一 內(nèi)容分析
本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
二 學(xué)情分析
學(xué)生已經(jīng)掌握了高中所學(xué)的基本初等函數(shù)的圖象及其性質(zhì), 能利用函數(shù)的圖象及其性質(zhì)解決一些問題。學(xué)生知道不等關(guān)系, 掌握了不等式的性質(zhì), 通過這部分內(nèi)容的學(xué)習(xí),學(xué)生將學(xué)會利用二次函數(shù)的圖象, 通過數(shù)形結(jié)合的思想, 掌握一元二次不等式的解法。
三 教學(xué)目標(biāo)
1.知識與技能目標(biāo):
。1)熟練應(yīng)用二次函數(shù)圖象解一元二次不等式的方法
。2)了解一元二次不等式與相應(yīng)函數(shù), 方程的聯(lián)系
2.過程與方法:
。1)通過學(xué)生已學(xué)過的一元一次不等式為例引入一元二次不等式的有關(guān)概及解法
。2)讓學(xué)生觀察二次函數(shù),在此基礎(chǔ)上, 找到一元二次不等式的解法并掌握此解法
。3)在學(xué)生尋找一元二次不等式的過中程中培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想
3.情感與價值目標(biāo):
。1)通過新舊知識的聯(lián)系獲取新知,使學(xué)生體會溫故而知新的道理
。2)通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認識,向?qū)W生逐步滲透辨證唯物主義思想。
。3)在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
四 教學(xué)重點、難點
1.重點
一元二次不等式的.解法
2.難點
理解元二次方程與一元二次不等式解集的關(guān)系
五 教學(xué)方法
啟發(fā)式教學(xué)法,討論法,講授法
六 教學(xué)過程
1.創(chuàng)設(shè)情景,提出問題(約10分鐘)
師:在初中,我們解過一元一次不等式,如解不等式x – 1 > 0,現(xiàn)在請同學(xué)們先畫出函數(shù)y = x – 1 的圖象,并通過觀察圖象回答以下問題: 1)x 為何值時,y = 0;2)x 為何值時,y > 0;3)x 為何值時,y < 0;4)一元一次方程x – 1 = 0的根能從函數(shù)y = x – 1上看出來嗎? 5)一元一次不等式 x – 1 > 0的解集能從函數(shù)y = x – 1上看出來嗎?
學(xué)生畫圖,思考。先把問題交給學(xué)生自主探究,過一段時間,再小組交流,此間教師巡視并指導(dǎo)。提問學(xué)生代表。
通過對上述問題的探究,學(xué)生得出以下結(jié)論:
因為上述方程x – 1 = 0以及不等式x – 1 > 0的左邊恰好是上述函數(shù)y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3 < 0, 因為Δ < 0,方程x22x + 3 < 0的解集為空集,即原不等式的解集為空集。
練習(xí):課本80頁練習(xí)第1題(1)-(3)【靈活掌握】.師:今天我們這節(jié)課的內(nèi)容有兩個: 1)會一元二次不等式的解法 2)理解三個“二次”的關(guān)系
作業(yè):課本第80頁習(xí)題 A
4.板書設(shè)計
§ 一元二次不等式及其解法
解不等式x2 – x – 6 > 0, 請先畫出二次函數(shù) y = x2 – x – 6的圖像,并回答以下問題: 1)x 為何值時,y = 0;y > 0;y < 0;2)一元二次方程x2 – x – 6 = 0的根能從函數(shù) y = x2 – x – 6上看出來嗎?一元二次不等式 x2 – x – 6 > 0的解集呢?
七 教學(xué)反思
組1、2題 例,解不等式:
1)2x24x + 1 > 0;3)-x2 + 2x – 3 < 0;
解:1)因為Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 <-1 x2=""> 2}.2)因為Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.
二元一次不等式教學(xué)設(shè)計4
一、教學(xué)目標(biāo):
。ㄒ唬┲R與能力目標(biāo):(課件第2張)
1.體會解不等式的步驟,體會比較、轉(zhuǎn)化的作用。
2.學(xué)生理解、鞏固一元一次不等式的解法.
3.用數(shù)軸表示解集,加深對數(shù)形結(jié)合思想的進一步理解和掌握。
4.在解決實際問題中能夠體會將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,學(xué)會用數(shù)學(xué)語言表示實際的數(shù)量關(guān)系。
。ǘ┻^程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過對一元一次方程的解法的復(fù)習(xí)和對不等式性質(zhì)的利用,導(dǎo)入對解不等式的討論。
3.學(xué)生體會通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達轉(zhuǎn)化為數(shù)學(xué)語言,從而解決實際問題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
。ㄈ┣楦、態(tài)度與價值目標(biāo):(課件第3張)
1.在教學(xué)過程中,學(xué)生體會數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式
的解法,樹立辯證統(tǒng)一思想。
3.通過學(xué)生的討論,學(xué)生進一步體會集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學(xué)習(xí),學(xué)生體會不等式解集的奇異的數(shù)學(xué)美。
二、教學(xué)重、難點:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準確求出解集。
3.能將文字敘述轉(zhuǎn)化為數(shù)學(xué)語言,從而完成對應(yīng)用問題的解決。
三、教學(xué)突破:
教材中沒有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的.不等式轉(zhuǎn)化為簡單不等式的過程,并通過學(xué)生的討論交流使學(xué)生經(jīng)歷知識的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
四、教具:計算機輔助教學(xué).
五、教學(xué)流程:
。ㄒ唬、復(fù)習(xí):
教學(xué)環(huán)節(jié)
教師活動
學(xué)生活動
設(shè)計意圖
導(dǎo)入新課
1.給出方程:(x+4)/3=(3x-1)/2,抽學(xué)生演算。(注意步驟)
2.學(xué)生回憶不等式的性質(zhì),并說出解不等式的關(guān)鍵在哪里。
3.讓學(xué)生舉一些不等式的例子。在學(xué)生歸納出一元一次不等式的概念后,據(jù)情況點評。
4.新課導(dǎo)入:通過上節(jié)課的學(xué)習(xí),我們已經(jīng)掌握了解簡單不等式的方法。這節(jié)課我們來共同探討解一元一次不等式的方法。
5.學(xué)生練習(xí),并說出解一元一次方程的步驟。
6.認真思考,用自己的語言描述不等式的性質(zhì),說出解不等式的關(guān)鍵在于將不等式化為x≤a或x≥a的形式。(出示課件第2頁)
7.舉出不等式的例子,從中找出一元一次不等式的例子,歸納出一元一次不等式的概念。
8.明確本課目標(biāo),進入對新課的學(xué)習(xí)。
9.復(fù)習(xí)解一元一次方程的解法和步驟。
10.讓學(xué)生回顧性質(zhì),以加強對性質(zhì)的理解、掌握。
11.運用類比思維
12.自然過度,出示課件第3、4張
。ǘ、新授:
教學(xué)環(huán)節(jié)
教師活動
學(xué)生活動
設(shè)計意圖
探究一元一次等式的解法
1、學(xué)生觀察課本第61頁例3,教師說明:解不等式就是利用不等式的三條基本性質(zhì)對不等式進行變形的過程。提醒學(xué)生注意步驟。
2.分析學(xué)生的解答,提醒學(xué)生在解不等式中常見的錯誤:不等式兩邊同乘(除)同一個負數(shù)不等號方向要改變。
3.激勵學(xué)生完成對(2)解答,并找學(xué)生上講臺演示。
4.強調(diào)在數(shù)軸上表示解集時的關(guān)鍵(出示課件第8頁)
5.出示練習(xí)(出示課件第9頁)
6.鼓勵學(xué)生討論課本第61頁的例4。提示學(xué)生:首先將簡單的文字表達轉(zhuǎn)化成數(shù)學(xué)語言。(出示課件第10頁)
7.指導(dǎo)學(xué)生歸納步驟。
8.補充適當(dāng)?shù)木毩?xí),以鞏固學(xué)生所學(xué)。(出示課件第12頁)
9.類比解一元一次方程,仔細觀察,理解用不等式的性質(zhì)(3)解不等式的原理,并掌握用數(shù)軸表示不等式的解的方法。
10.學(xué)生類比解一元一次方程的步驟
與解一元一次不等式的一般步驟,同時完成練習(xí)。(出示課件第6頁)
11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教師提示,組內(nèi)討論后,檢查自己的解答過程,彌補不足,進一步體會解一元一次不等式的方法。
12.理解、體會在數(shù)軸上表示解集的方法和關(guān)鍵。
13.學(xué)生組內(nèi)討論完成。
14.認真完成對例題的解答,在教師的提示下找到不等量關(guān)系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.
15.組內(nèi)討論并歸納后,看教師所出示的課件。(出示課件第11頁)
16.認真完成練習(xí)。
17.電腦逐步演示,讓學(xué)生從演示過程中理解不等式的解法。(出示課件第5張)
18.鞏固對一般解法的理解、掌握。
19.通過類比歸納,提高學(xué)生的自學(xué)能力。(出示課件第7頁)以訂正學(xué)生解答。
20.讓學(xué)生明白不等式的解集是一個范圍,而方程的解是一個值。
21.培養(yǎng)學(xué)生的擴展能力。
22.類比一元一次方程的解法以加深對一元一次不等式解法的理解。
23.通過動手、動腦使所學(xué)知識得到鞏固。
24.鞏固所學(xué)。
。ㄈ、小結(jié)與鞏固:
教學(xué)環(huán)節(jié)
教師活動
學(xué)生活動
設(shè)計意圖
小結(jié)與鞏固
1.引導(dǎo)學(xué)生對本課知識進行歸納。
2.學(xué)生完成后(出示課件第13、14頁)。
3.練習(xí)與鞏固。
1.學(xué)生組內(nèi)討論小結(jié),組長幫助組員對知識鞏固、提升。
2.學(xué)生加強理解。
3.完成練習(xí):書63頁第4題,第5(2、4)題。
1.培養(yǎng)學(xué)生總結(jié)、歸納的能力。
2.點撥學(xué)生對知識的理解與掌握。
3.鞏固本課所學(xué)。
【二元一次不等式教學(xué)設(shè)計】相關(guān)文章:
一元一次不等式教學(xué)反思01-15
一元一次不等式教學(xué)反思范文04-07
一元一次不等式組教學(xué)反思04-22
二元一次方程組教學(xué)反思05-15
《一次函數(shù)與一元一次不等式》教學(xué)反思01-15
不等式的性質(zhì)教學(xué)反思05-20
(精華)二元一次方程組教學(xué)反思05-15