思思热免费在线视频观看|欧美国产精品一级|精品亚洲一区二区|真实国产乱子伦对白视频

<b id="w545d"><legend id="w545d"></legend></b>
<blockquote id="w545d"></blockquote>
    1. <thead id="w545d"></thead>
        首頁 申請書推薦信邀請函通知工作總結(jié)工作計劃策劃書工作報告合同演講稿職業(yè)規(guī)劃
        當(dāng)前位置:98158范文網(wǎng)>教育范文>教學(xué)反思>《最大公因數(shù)》教學(xué)反思

        《最大公因數(shù)》教學(xué)反思

        時間:2024-10-08 14:38:50 教學(xué)反思 我要投稿

        《最大公因數(shù)》教學(xué)反思

          作為一名優(yōu)秀的人民教師,教學(xué)是重要的工作之一,通過教學(xué)反思可以快速積累我們的教學(xué)經(jīng)驗,那么寫教學(xué)反思需要注意哪些問題呢?以下是小編幫大家整理的《最大公因數(shù)》教學(xué)反思,歡迎閱讀與收藏。

        《最大公因數(shù)》教學(xué)反思

        《最大公因數(shù)》教學(xué)反思1

          日本著名數(shù)學(xué)教育家米山國藏指出:“作為知識的數(shù)學(xué)出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數(shù)學(xué)的精神,數(shù)學(xué)的思想、研究的方法和著眼點等,這些隨時隨地發(fā)生作用,使他們終身受益!睆倪@個教學(xué)的設(shè)計中我們可以看到,教學(xué)中不只是讓學(xué)生接受一個概念知識或一種求最大公約數(shù)的方法;不只是注重數(shù)學(xué)形式層面的教學(xué),而是更重視數(shù)學(xué)發(fā)現(xiàn)層面的教學(xué),即讓學(xué)生在經(jīng)歷“數(shù)學(xué)家”解決問題的過程中去理解、去感受一種數(shù)學(xué)的思想和觀念──數(shù)學(xué)化思想。學(xué)生先是感知地板磚中隱含的數(shù)學(xué),會用約數(shù)、倍數(shù)知識解釋簡單的生活現(xiàn)象,進(jìn)而思考并嘗試解決畫廊內(nèi)裝飾畫的設(shè)計,學(xué)生自然會聯(lián)想到地板磚中數(shù)學(xué)知識。但是,從解釋到應(yīng)用設(shè)計,在沒有學(xué)習(xí)公約數(shù)的情況下會存在較大的難度。于是,創(chuàng)設(shè)了做數(shù)學(xué)的空間。讓他們在設(shè)計正方形的過程中,逐漸感知公約數(shù)的存在,建立了解決這種問題的數(shù)學(xué)模型。再反思與總結(jié),引導(dǎo)學(xué)生自己創(chuàng)造了“公約數(shù)”與“最大公約數(shù)”的概念。

          數(shù)學(xué)化思想觀念是指用數(shù)學(xué)眼光去認(rèn)識和處理周圍事物或數(shù)學(xué)問題,可以培養(yǎng)學(xué)生良好的“用數(shù)學(xué)”意識,使數(shù)學(xué)關(guān)系成為學(xué)生的一種思維模式。而我們的.課堂中,大多還是圍繞知識就事論事,沒有從形成學(xué)生思維模式的角度去展開知識形成和問題解決的思維過程,去注重現(xiàn)代的數(shù)學(xué)思想,去隱含重要的數(shù)學(xué)方法,這樣,學(xué)生學(xué)到的只是知識的堆砌,沒有自主的發(fā)展和對數(shù)學(xué)本質(zhì)的領(lǐng)悟。

        《最大公因數(shù)》教學(xué)反思2

          《兩三位數(shù)除以一位數(shù)》商是兩位數(shù)是在學(xué)生學(xué)習(xí)了商是三位數(shù)和有余數(shù)除法的基礎(chǔ)上進(jìn)行的,它是學(xué)習(xí)除數(shù)是多位數(shù)除法的基礎(chǔ)。因此要在引導(dǎo)學(xué)生解決具體問題的過程中,切實理解算理,掌握計算方法。

          1、聯(lián)系舊知,激發(fā)興趣

          本節(jié)課我有意識的在一開始設(shè)計了搶答環(huán)節(jié),讓學(xué)生判斷大屏幕上幾道題目的商的位數(shù),進(jìn)而發(fā)現(xiàn)不同,激發(fā)興趣,引入本節(jié)課的學(xué)習(xí)。從效果上看,學(xué)生在判斷的過程中比較感興趣,并能初步感受與舊知的聯(lián)系與不同,達(dá)到了預(yù)期的目的。

          2、放手學(xué)生,設(shè)置大問題

          本節(jié)課我在這方面做的不好。在擺小棒理解算理環(huán)節(jié),我領(lǐng)的比較多,學(xué)生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學(xué)生最后也弄明白了該如何分小棒,但學(xué)生的能力沒有得到提高。在于老師的建議下,在重建設(shè)計中,我會注意放手,設(shè)置大問題。比如:“請同學(xué)們看著大屏幕上的小棒,想一想應(yīng)該怎樣分呢?先自己想一想,然后同桌交流一下!弊寣W(xué)生帶著問題思考,在思考中考慮擺小棒的全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當(dāng)引領(lǐng)點撥,但這和我之前的設(shè)計感覺就不一樣了,后者更能體現(xiàn)學(xué)生主體地位。在這方面,我今后還應(yīng)提高意識,不斷實踐。

          3、設(shè)計新穎的練習(xí)題,增多練習(xí)內(nèi)容。

          計算教學(xué),單純的讓學(xué)生計算勢必會使學(xué)生產(chǎn)生厭倦。我聯(lián)系學(xué)生實際和生活實際,設(shè)計出多種多樣的練習(xí)題,比如:計算之后讓學(xué)生思考問題“想一想:三位數(shù)除以一位數(shù),什么時候商是三位數(shù),什么時候商是兩位數(shù)?”或讓學(xué)生“火眼金睛”辨別對錯,或讓學(xué)生在解決實際問題中說一說先算什么再算什么,感受解決實際問題的`一般環(huán)節(jié),將思路滲透到日常教學(xué)中,或在最后讓學(xué)生根據(jù)所學(xué)再來一組比賽等,結(jié)合學(xué)生不同的計算階段提出不同的要求和練習(xí)形式,使單調(diào)枯燥的計算練習(xí)變得生動有趣,達(dá)到了較好的教學(xué)效果。

          我將以本次講課為契機,在今后的教學(xué)中應(yīng)用本次活動學(xué)到的知識,加以實踐,不斷提高自身的教學(xué)水平。

        《最大公因數(shù)》教學(xué)反思3

          一、我認(rèn)為,這節(jié)課的閃光點有以下幾個方面:

          1、在復(fù)習(xí)的過程中,引導(dǎo)學(xué)生復(fù)習(xí)用多種方法找每個數(shù)的因數(shù),豐富學(xué)生解決問題的多樣性。

          2、通過復(fù)習(xí)、發(fā)現(xiàn)、總結(jié),什么是公因數(shù)及最大公因數(shù),在研究的過程中交流、總結(jié)自己的發(fā)現(xiàn)。

          3、通過填寫集合圖,使學(xué)生了解集合的思想,并進(jìn)一步體會公因數(shù)和最大公因數(shù)的關(guān)系。

          4、通過練一練活動,引導(dǎo)學(xué)生獨立發(fā)現(xiàn)并總結(jié)出:(1)倍數(shù)關(guān)系的兩個數(shù),最大的數(shù)就是這兩個數(shù)的.最大公因數(shù);(2)公因數(shù)只有“1”的兩個數(shù)(互質(zhì)數(shù)),它們的最大公因數(shù)就是這兩個數(shù)的乘積。

          5、在進(jìn)一步的練習(xí)中,在學(xué)生獨立解決問題的基礎(chǔ)上,讓學(xué)生說出自己的思考方法,進(jìn)行集體交流,相互學(xué)習(xí),豐富學(xué)生解決問題的策略。

          二、這節(jié)課的不足,有以下幾方面:

          1、教學(xué)過程中,缺少對學(xué)生學(xué)習(xí)情況的評價 特別是鼓勵性的評價。

          2、教學(xué)思想“由一般到抽象”的過程體現(xiàn)的不夠明了。

          3、 對于教材的拓展不夠深入。

          三、改進(jìn)措施:

          1、加強和提高對學(xué)生評價的意識,重視評價的功能。

          2、在備課時,要清楚把握教學(xué)內(nèi)容的梯度,使教學(xué)思想融入教學(xué)過程之中。

          3、加強對教材的拓展,切實做到以教材為載體,以教學(xué)內(nèi)容為導(dǎo)向,發(fā)展學(xué)生的數(shù)學(xué)能力。

        《最大公因數(shù)》教學(xué)反思4

          一、分析基礎(chǔ)知識,準(zhǔn)確制定教學(xué)目標(biāo)。

          本節(jié)課是在學(xué)生已經(jīng)理解和掌握因數(shù)、倍數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和分?jǐn)?shù)四則計算的基礎(chǔ)。我根據(jù)教材的編寫特點準(zhǔn)確地制定了教學(xué)目標(biāo),即理解公因數(shù)及最大公因數(shù)的意義。知道任意兩個數(shù)都有公因數(shù);能夠采用枚舉法找到兩個數(shù)的最大公因數(shù)。通過動手、觀察、思考等教學(xué)活動,從拼擺過程中發(fā)現(xiàn)公因數(shù),再通過進(jìn)一步探究明確公因數(shù)及最大公因數(shù)的含義。

          二、在現(xiàn)實的情境中教學(xué)概念,借助直觀操作活動,經(jīng)歷概念的形成過程。

          以往教學(xué)公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。而本節(jié)課注意引導(dǎo)學(xué)生通過找出已知面積的長方形的長和寬的長度,確定怎樣使這樣的兩個長方形拼成一個新的長方形。其次,引導(dǎo)學(xué)生觀察這樣的幾組數(shù)據(jù)與長方形面積之間的關(guān)系——右面的這些數(shù)據(jù)都是左面這些數(shù)據(jù)的因數(shù)。三是揭示出公因數(shù)和最大公因數(shù)的含義——指出用紅筆標(biāo)出的這些數(shù)據(jù)是左面這兩個數(shù)的公因數(shù),找到這里面最大的一個公因數(shù),完成由形象到抽象的過程,把感性認(rèn)識提升為理性認(rèn)識。

          三、把握內(nèi)涵外延,準(zhǔn)確理解概念的含義。

          概念的內(nèi)涵是指這個概念的所反映的一切對象的共同的本質(zhì)屬性。公因數(shù)是幾個數(shù)公有的因數(shù),可見“幾個數(shù)公有的”是公因數(shù)的本質(zhì)屬性。因此在因數(shù)的基礎(chǔ)上學(xué)習(xí)公因數(shù),關(guān)鍵在于突出“公有”的含義。本節(jié)課突出概念的內(nèi)涵是“既是……也是……”即“公有”。教學(xué)中,我首先讓學(xué)生在練習(xí)本上找出12和16的因數(shù),然后借助直觀的集合圖揭示出“既是12的因數(shù),又是16的因數(shù)”這句話的含義,幫助學(xué)生進(jìn)一步理解公因數(shù)和最大公因數(shù)的意義。這樣安排有兩點好處:一是學(xué)生通過操作活動,能體會公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。

          概念的外延是指這個概念包含的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,這對加深概念的認(rèn)識很有好處。本節(jié)課我注意利用反例,來凸現(xiàn)公因數(shù)的.含義。在用集合圖法來表示12和16的公因數(shù)的時候,找到填寫錯誤的學(xué)生的例子,提示學(xué)生注意:并集里填寫的是兩個數(shù)的公因數(shù),而沒有交在一起的集合圖中,只填寫這兩個數(shù)的都有的因數(shù),從而進(jìn)一步明確公因數(shù)的概念。

          四、教學(xué)中的不足:

          教師的提問有時指向性不是很強,學(xué)生不能很快地明白老師的意圖,影響了學(xué)生的思考,須進(jìn)一步提高。在教學(xué)“兩個長和寬都是整厘米數(shù)的長方形的面積分別是2平方厘米和3平方厘米,這兩個長方形的長、寬分別是多少?”時,學(xué)生有些困難,我應(yīng)該讓學(xué)生動手在本上畫一畫,幫助學(xué)生找到,降低難度,這點考慮不周,沒有切實聯(lián)系實際。

          自己要學(xué)的東西還有很多,應(yīng)注意提高自身修養(yǎng)。多閱讀、多聽課,努力提高自己的教學(xué)水平,更好地為學(xué)生服務(wù)。

        《最大公因數(shù)》教學(xué)反思5

          《公因數(shù)和最大公因數(shù)》這部分內(nèi)容是在學(xué)生理解因數(shù)與倍數(shù)的相互關(guān)系,會找1~100的自然數(shù)的因數(shù),并且在學(xué)習(xí)面積概念時積累了“密鋪”的活動經(jīng)驗開展教學(xué)的。對于《公因數(shù)和最大公因數(shù)》這樣一節(jié)概念課的教學(xué),其教學(xué)重、難點我認(rèn)為就是對“公”字意義的理解,也就是如何體驗這個數(shù)既是一個數(shù)的因數(shù),又是另一個數(shù)的因數(shù),才是兩個數(shù)“公有”的因數(shù)。為了突出本節(jié)課的教學(xué)重點、突破教學(xué)難點,結(jié)合我們本學(xué)期的教研主題“如何設(shè)計有效的教學(xué)活動,達(dá)成教學(xué)目標(biāo)”,我主要從以下幾方面入手來嘗試教學(xué):

          一、重視活動體驗,讓學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程。

          第一次猜想:一個長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數(shù)的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學(xué)生帶著自己的思考去操作驗證,在操作中體會“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。

          第二次猜想:現(xiàn)在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學(xué)生可以熟練地操作驗證,在活動體驗和交流中進(jìn)一步感知選擇正方形時既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。

          第三次猜想:繼續(xù)變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的正方形呢?學(xué)生繼續(xù)操作驗證。這時學(xué)生已經(jīng)有了前兩次的操作感知,積累了充分的活動經(jīng)驗,這些活動經(jīng)驗可以支撐他們?nèi)ネ评、想象,找到能“擺滿沒有剩余”的本質(zhì),從而從整體感知正方形邊長的規(guī)律。

          然后,發(fā)揮教師的主導(dǎo)作用:“我們前后共擺了三個長方形,得到了黑板上的這些數(shù)據(jù)。仔細(xì)想一想,這些正方形的邊長和什么有關(guān)?有怎樣的關(guān)系呢?”引導(dǎo)學(xué)生觀察數(shù)據(jù),發(fā)現(xiàn)規(guī)律,引出公因數(shù)和最大公因數(shù)的概念。

          通過創(chuàng)設(shè)以上教學(xué)活動,讓學(xué)生在活動中實實在在地經(jīng)歷了公因數(shù)產(chǎn)生的過程,積累豐富的活動經(jīng)驗,充分體驗公因數(shù)的意義。

          二、借助幾何直觀,增進(jìn)學(xué)生對概念意義的理解。

          通過上面的`操作體驗和思考認(rèn)知,學(xué)生認(rèn)識了公因數(shù)和最大公因數(shù),又經(jīng)歷了找公因數(shù)和最大公因數(shù)的過程,學(xué)生能感知“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”這三個概念之間存在著一些聯(lián)系。為了幫助學(xué)生深入地理解概念,提出問題:“對比這三個概念,現(xiàn)在你能說說它們之間的聯(lián)系與區(qū)別嗎?可以選其中兩個說一說!币龑(dǎo)學(xué)生進(jìn)一步地思考。這時學(xué)生交流:“‘因數(shù)’是一個數(shù)的,而‘公因數(shù)’是兩個或兩個以上的數(shù)公有的”、“‘最大公因數(shù)’首先它也是‘公因數(shù)’中的一個,而且是‘公因數(shù)’中最大的一個!备鶕(jù)學(xué)生的交流,我通過課件,借助韋恩圖形象直觀地演示了“因數(shù)”與“公因數(shù)”、“公因數(shù)”與“最大公因數(shù)”之間的關(guān)系,增進(jìn)了學(xué)生對概念意義的理解。

          三、通過實際問題,溝通數(shù)學(xué)概念與現(xiàn)實世界的聯(lián)系。

          在學(xué)生充分理解區(qū)分了“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”三個概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數(shù))”學(xué)生想到:這是個用因數(shù)的知識解決的問題,求每段可以是幾分米,也就是求16的因數(shù)。這時,引導(dǎo)學(xué)生改編成一個用公因數(shù)來解決的問題,學(xué)生首先想到了

          少需要兩個數(shù)據(jù),于是有的學(xué)生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數(shù))”這樣的問題。在學(xué)生思考的過程,既是在進(jìn)一步理解概念的意義,又找到了“公因數(shù)”、“最大公因數(shù)”概念的現(xiàn)實意義,培養(yǎng)了學(xué)生的數(shù)學(xué)抽象能力。

          一節(jié)課下來,我發(fā)現(xiàn)學(xué)生是最棒的!在不斷地實踐探索中,他們的認(rèn)識不斷提升,我仿佛聽得到他們思維拔節(jié)的聲音。

          當(dāng)然,仔細(xì)琢磨,這節(jié)課還有很多可圈可點之處,如:

          1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關(guān)系環(huán)節(jié),有的孩子不能用數(shù)學(xué)的眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個環(huán)節(jié)之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個好的思維支點。

          2、因為操作感知時間較長,在本節(jié)課的第二個知識目標(biāo)——找公因數(shù)和最大公因數(shù)的方法環(huán)節(jié)就沒有充分的時間將孩子的各種方法展開交流,也是個小小的遺憾。

          帶著原有的思考我們做了如上嘗試,然而一節(jié)課的時間是有限的,個人業(yè)務(wù)素養(yǎng)也有待提高,所以沒有做到面面俱到。好在一節(jié)課的結(jié)束并不意味著思考的終止,我又帶著實踐中的新問題上路了。期待著思考的路上,能得到更多領(lǐng)導(dǎo)、同行們的指點與批評!

        《最大公因數(shù)》教學(xué)反思6

          分析基礎(chǔ)知識:本單元是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和通分以及分?jǐn)?shù)四則計算的基礎(chǔ)。教材分兩段安排教學(xué)內(nèi)容:第一段,認(rèn)識公倍數(shù)、最小公倍數(shù),探索找兩個數(shù)的最小公倍數(shù)的方法;第二段,認(rèn)識公因數(shù)、最大公因數(shù),探索找兩個數(shù)的最大公因數(shù)的方法。此外,在本單元的最后還安排了實踐與綜合應(yīng)用《數(shù)字與信息》。

          一、借助操作活動,經(jīng)歷概念的形成過程。

          以往教學(xué)公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的'因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。本單元教材注意以直觀的操作活動,讓學(xué)生經(jīng)歷公因數(shù)和最大公因數(shù)概念的形成過程。這樣安排有兩點好處:一是學(xué)生通過操作活動,能體會公倍數(shù)和公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在這節(jié)課上,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用邊長6厘米的正方形正好鋪滿長18厘米,寬12厘米的長方形。在發(fā)現(xiàn)結(jié)果的同時,還引導(dǎo)學(xué)生聯(lián)系除法算式進(jìn)行思考,對直觀操作活動的初步抽象。再把初步發(fā)現(xiàn)的結(jié)論進(jìn)行類推,發(fā)現(xiàn)用邊長1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長18厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、3、6這些數(shù)和18、12有什么關(guān)系。這時揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合圖顯示公因數(shù)的意義。實實在在讓學(xué)生經(jīng)歷了概念的形成過程,效果較好。

          二、預(yù)設(shè)探究過程,增強學(xué)生主體意識。

          例3中,教師宣布游戲規(guī)則后,放手讓學(xué)生動手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學(xué)生探究廣闊的平臺,教師拋出問題后,讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動了已有知識經(jīng)驗、方法、技能,八仙過海各顯神通,找出了各種求“12和18的公因數(shù)和最大公因數(shù)”的方法。在這個過程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識,也充分體現(xiàn)了教師駕馭教材,調(diào)控學(xué)生的能力。

          三、重視方法和策略的滲透,提高學(xué)生學(xué)習(xí)能力。

          課程標(biāo)準(zhǔn)只要求在1~100的自然數(shù)中,能找出10以內(nèi)兩個自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1~100的自然數(shù)中,能找出兩個自然數(shù)的公因數(shù)和最大公因數(shù),而不是用分解質(zhì)因數(shù)的方法求出公倍數(shù)或公因數(shù)。不教學(xué)用分解質(zhì)因數(shù)的方法求最小公倍數(shù)和最大公因數(shù)還有兩個原因:一是通過列舉出兩個數(shù)的倍數(shù)或因數(shù)的方法,找出公倍數(shù)或公因數(shù)。突出對公倍數(shù)和公因數(shù)意義的理解;二是學(xué)生對用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān)。所以在教學(xué)找公倍數(shù)或公因數(shù)時,應(yīng)提倡思考方法多樣化。例4教學(xué)中,學(xué)生得出了三種方法來尋找12和18的公因數(shù)和最大公因數(shù)。(當(dāng)然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優(yōu)化的過程,哪一種方法會更簡單?通過對比,大多數(shù)學(xué)生贊同方法二。通過討論,引導(dǎo)學(xué)生以后解決此類問題時可以多運用較好的方法二。在這中間教師注意到了引導(dǎo)、小結(jié)、鼓勵,師生共同得出結(jié)論。

          復(fù)習(xí)題中回顧了四年級知識基礎(chǔ)、列舉法和標(biāo)記法,在例3中,學(xué)生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形?”時就有了基礎(chǔ)。例4中,學(xué)生也知道用列舉法和標(biāo)記法來解決問題。

          特別是用集合圖來表示因數(shù)和公因數(shù)的教學(xué)值得一提。有趣的游戲,預(yù)料中的爭執(zhí),恰到好處的體現(xiàn)了圖的妙用,圖的填法比一步步教學(xué)生如何填更有效,也更不易遺忘。練習(xí)五,第一題在填完集合圖后對公有因數(shù)和獨有因數(shù)意義的的提升,為下面的學(xué)習(xí)作了伏筆。體會初步的集合思想。

          練一練,并沒有局限于畫畫△、○,找找公因數(shù)和最大公因數(shù),而是進(jìn)一步指導(dǎo)學(xué)生觀察,發(fā)現(xiàn)公因數(shù)都比小的數(shù)小(18和30中,18是小的數(shù)),在18的因數(shù)中找公因數(shù)的確更快、更好些。

          所以請老師們在平時的教學(xué)中也去分析、思考,把握例題和練習(xí)中每個需要提升之處,在課堂中時時注意方法和策略的滲透,較好地用實這套教材。

        《最大公因數(shù)》教學(xué)反思7

          1、創(chuàng)設(shè)情境引入新知。

          我在教學(xué)時,改變教材中從單調(diào)的計算引出概念的做法,而是創(chuàng)設(shè)情景,通過生動有趣的畫面,吸引學(xué)生積極思維,其特有的感染力和表現(xiàn)力,能直觀生動地對學(xué)生心理起到催化作用,有效地激發(fā)了學(xué)生探究新知識的興趣,使教與學(xué)始終處于活化狀態(tài)。

          2、合理利用教材。

          “循環(huán)小數(shù)”是學(xué)生較難準(zhǔn)確地掌握和表述的一個概念,特別是表述其意義的“從某一位起”、“依次”、“不斷”、“重復(fù)出現(xiàn)”等抽象說法,學(xué)生難以理解。這節(jié)課的內(nèi)容也較多,我打破教材編排順序,將教學(xué)內(nèi)容重新整合,靈活處理教材,先以王鵬喜歡跑步引入計算400÷75讓學(xué)生計算發(fā)現(xiàn)商中重復(fù)出現(xiàn)一個相同的數(shù)字,再以王鵬喜歡游泳引出計算25÷22讓學(xué)生計算發(fā)現(xiàn)商中有兩個不斷重復(fù)出現(xiàn)的數(shù)字。從而引導(dǎo)學(xué)生發(fā)現(xiàn)發(fā)現(xiàn)商的特點,引出“循環(huán)小數(shù)”。這樣可以將難點分散,各個擊破。

          3、引導(dǎo)學(xué)生探索,讓學(xué)生成為真正的參與者。

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。”數(shù)學(xué)學(xué)習(xí)不應(yīng)是簡單個體接受知識的`過程,而是一個主體對自己感興趣的且是現(xiàn)實的生活性主題的探究與發(fā)展的過程。在新課中,我首先從生活中的現(xiàn)象入手,再引導(dǎo)學(xué)生主動探究數(shù)學(xué)中的問題,通過讓學(xué)生選擇自己感興趣的信息試算、觀察、分析、比較、討論等學(xué)習(xí)方式充分調(diào)動學(xué)生多種感官的參與,給學(xué)生提供自主合作探究的空間,讓學(xué)生全面參與新知的發(fā)生、發(fā)展和形成過程,使學(xué)生真正體驗到探究的樂趣和做數(shù)學(xué)的價值。

          當(dāng)然,在這節(jié)課中也有很多不足之處。如我在教學(xué)中過多地注意預(yù)設(shè),使教學(xué)放不開手腳,環(huán)節(jié)安排趨于飽和,這樣壓縮了學(xué)生思維空間,在今后的教學(xué)中,特別是環(huán)節(jié)預(yù)設(shè)應(yīng)在于精、在于厚實。

        《最大公因數(shù)》教學(xué)反思8

          公因數(shù)與最大公因數(shù)這一課教材設(shè)計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學(xué)生在解決實際問題中探索公因數(shù)的認(rèn)識。因此,在教學(xué)中要重視通過嘗試解決問題讓學(xué)生聯(lián)系已有的知識來引入公因數(shù)的認(rèn)識。使學(xué)生初步體會學(xué)習(xí)公因數(shù)在解決實際問題中有著重要作用。

          這節(jié)課的上課情況感覺較好,課堂比較流暢,重難點也都注意到了,但是通過學(xué)生作業(yè)反饋情況來看,部分學(xué)生在尋找公因數(shù)和最大公因數(shù)時,容易出現(xiàn)漏掉因數(shù)的情況,如9的.因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時,部分學(xué)生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進(jìn)去,這一情況在預(yù)設(shè)時我雖然想到了學(xué)生會錯,也在課堂上進(jìn)行了說明,但是少數(shù)學(xué)生還是出現(xiàn)了錯誤。

          用例舉的策略找出所有公因數(shù)的教學(xué)中,教材上有種層次不同學(xué)生可以掌握的方法參考,在這里的教學(xué)中我只是參照教材注重了這兩種方法的講解,這里教材的應(yīng)是要求學(xué)生有序地列舉就行了,不同水平的學(xué)生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學(xué)時,有些學(xué)生運用了一些比較獨特的方法尋找公因數(shù),教師應(yīng)該給予肯定,說明只要有序地列舉出因數(shù)來尋找公因數(shù)就可以了。但是,對于學(xué)生出現(xiàn)的各種方法可以讓學(xué)生進(jìn)行對比,體會哪種方法更好,更適合自己,進(jìn)而對自己的算法進(jìn)行優(yōu)化。

        《最大公因數(shù)》教學(xué)反思9

          本節(jié)課的教學(xué)內(nèi)容是求兩個數(shù)的公因數(shù)和兩個數(shù)的最大公因數(shù)的第二課時。教學(xué)目標(biāo)是進(jìn)一步理解兩個數(shù)的公因數(shù)和最大公因數(shù)的意義,比較熟練地求出兩個數(shù)的最大公因數(shù),包括兩種特殊情況。這節(jié)課上的非常順利,課堂氣氛活躍,師生互動和諧,取得了較好的課堂教學(xué)效果。

          上課的'第一環(huán)節(jié),是復(fù)習(xí)兩個數(shù)的公因數(shù)和最大公因數(shù)的意義。在復(fù)習(xí)的過程中,我不是單純地讓學(xué)生復(fù)述兩個數(shù)的公因數(shù)和最大公因數(shù)的意義,而是讓學(xué)生舉例說明。學(xué)生說出了許多組數(shù),找出了它們的公因數(shù)和最大公因數(shù)。在學(xué)生舉例的過程中,對它們的意義有了更深的理解。我擇其四組板書在黑板上:4和5,5和6,5和7,7和9。讓學(xué)生觀察,這四組數(shù)有什么特點。我的本意是讓學(xué)生發(fā)現(xiàn)兩個數(shù)的最大公因數(shù)的一種特殊情況,即兩個數(shù)的公因數(shù)只有1,那么它們的最大公因數(shù)就是1。 “我發(fā)現(xiàn)兩個數(shù)中只要有一個質(zhì)數(shù),它們的最大公因數(shù)就是1!边@是一個大膽的猜測,雖說是出乎意料,但更使課堂充滿了生機。我讓學(xué)生判斷他的觀點是否正確。在小組討論的過程中,有學(xué)生提出了質(zhì)疑,“這個觀點不對,比如2和4,2是質(zhì)數(shù),但它倆的最大公因數(shù)不是1!庇钟袑W(xué)生提出3和6,5和10等。我接著又讓學(xué)生觀察,這幾組數(shù)又有什么特點。通過通論觀察,完成了本節(jié)課的另一個教學(xué)任務(wù),發(fā)現(xiàn)了兩個數(shù)的最大公因數(shù)的另一種特殊情況,即兩個數(shù)是倍數(shù)關(guān)系,那么它們的最大公因數(shù)就是較小的數(shù),學(xué)生發(fā)現(xiàn)了兩個數(shù)的最大公因數(shù)的幾種情況,當(dāng)兩個數(shù)都是質(zhì)數(shù)時,它們的最大公因數(shù)是1;當(dāng)兩個數(shù)是連續(xù)的自然數(shù)時,它們的最大公因數(shù)是1;兩個數(shù)的最大公因數(shù)是1,這兩個數(shù)可以是質(zhì)數(shù),也可以是合數(shù),還可以一個是質(zhì)數(shù),一個是合數(shù),等等。

        《最大公因數(shù)》教學(xué)反思10

          這節(jié)課是在學(xué)習(xí)了公因數(shù)和最大公因數(shù)之后教學(xué)的,在實際教學(xué)中我發(fā)現(xiàn)學(xué)生不能靈活利用最大公因數(shù)的知識解決實際問題,有的同學(xué)一看到求最大、最多、最長是多少,便不假思索,直接求它們的最大公因數(shù),至于為什么是求最大公因數(shù),有的同學(xué)不理解,或是知其然而不知其所以然。基于此,我設(shè)計了這節(jié)課。在教學(xué)中,我努力做大了以下幾點:

          1、借助操作活動,讓學(xué)生形成解決問題的策略。在教學(xué)中,我以學(xué)生感興趣的六一節(jié)活動貫穿始終,讓學(xué)生在積極、歡愉的氛圍中學(xué)習(xí)。通過給學(xué)生提供具體的.材料,讓他們利用已有的材料,剪一剪、畫一畫、折一折、想一想、算一算,用不同的方法來解決問題。從動手操作中理解要解決這個問題,實質(zhì)上是求已知數(shù)量的最大公因數(shù),并結(jié)合課件演示明確為什么是求最大公因數(shù)。提升了學(xué)生的思維層次。再通過后面的嘗試應(yīng)用,練一練,靈活應(yīng)用等環(huán)節(jié)進(jìn)一步明確思路。學(xué)生在解決問題的過程中獲得感悟,初步形成解決此類問題的策略。

          2、預(yù)設(shè)探究過程,增強學(xué)生的主體意識。嘗試應(yīng)用環(huán)節(jié)更是學(xué)生自主探究的廣闊平臺,我拋出問題后讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動已有知識經(jīng)驗、方法、技能,八仙過海各顯神通,找出各種求正方形的邊長最長是多少的方法,從中再次體驗到要解決這個問題實質(zhì)上還是求已知數(shù)量的最大公因數(shù)。整個教學(xué)過程學(xué)生能主動的建構(gòu)知識,而不是簡單模仿,充分體現(xiàn)了學(xué)生是課堂學(xué)習(xí)的主人,課堂是學(xué)生學(xué)習(xí)的天地。

          3、教學(xué)中我充分發(fā)揮小組合作學(xué)習(xí)能力,給學(xué)生充分的交流與研究時間,讓學(xué)生在交流展示中明確解決此類問題的策略,達(dá)到把復(fù)雜的問題變得簡單,把簡單的問題變得有厚度。

        《最大公因數(shù)》教學(xué)反思11

          一、,找一個數(shù)的因數(shù)

          要成對找,這在教學(xué)因數(shù)時就是一個難點。

          二、教學(xué)例題3時,應(yīng)先組織學(xué)生大膽猜測:“哪種紙片能正好鋪滿這個長方形?”再讓學(xué)生實踐驗證。

          猜測、驗證的過程是學(xué)生進(jìn)行探究活動的必要途徑。在實踐驗證的過程中,我緊扣用邊長( )厘米的`正方形鋪長方形,能鋪( )層,每層鋪( )個。并與其中有兩種正方形不能正好鋪滿長方形的情況作比較,組織學(xué)生交流:“怎樣的正方形才能正好鋪滿這個長方形?”由于前面鋪墊充分,學(xué)生很順利地得出了結(jié)論。例題3的教學(xué), “哪種哪種紙片能正好鋪滿這個長方形?”“還有哪些邊長整厘米數(shù)的正方形能正好鋪滿這個長方形?”“任何兩個數(shù)的公因數(shù)個數(shù)都是有限的嗎?”將學(xué)生的思維一步步引向深入,就能激發(fā)學(xué)生自主探究的熱情。

          三、教學(xué)例4時,應(yīng)充分放手讓學(xué)生探索8和12的公因數(shù)以及最大公因數(shù)。

          交流中,應(yīng)充分肯定學(xué)生的方法,學(xué)生在交流中出現(xiàn)問題時,應(yīng)讓他們自我修正,自我完善。并對四種方法進(jìn)行比較“看哪種方法更便捷”。最大公因數(shù)的概念也要通過練習(xí),讓學(xué)生自己談對最大公因數(shù)的感悟。

        《最大公因數(shù)》教學(xué)反思12

          一.教學(xué)設(shè)計學(xué)科名稱:

          北師大版數(shù)學(xué)五年級上冊《找最大公因數(shù)》

          二.所在班級情況,學(xué)生特點分析:

          我校地處城郊,所帶班級學(xué)生共25人,學(xué)生的思維比較活躍,比較善于提出數(shù)學(xué)問題,能在小組合作學(xué)習(xí)中主動探究知識。本冊一單元,學(xué)生已經(jīng)理解了因數(shù)和倍數(shù)的意義,能用乘法算式、集合等方式列舉出一個數(shù)的因數(shù)。因此用列舉法找最大公因數(shù)沒有困難。而利用因數(shù)關(guān)系、互質(zhì)數(shù)關(guān)系找還有一定的難度。因為學(xué)生不易發(fā)現(xiàn)這兩個數(shù)具有這些關(guān)系。

          三.教學(xué)內(nèi)容分析:

          教材直接呈現(xiàn)了找公因數(shù)的一般方法:先用想乘法算式的方式分別找出12和18 的因數(shù),再找出公因數(shù)和最大公因數(shù)。在此基礎(chǔ)上,引出公因數(shù)與最大公因數(shù)的概念。教材用集合的方式呈現(xiàn)探索的過程。在練習(xí)1、2中引出了用因數(shù)關(guān)系、互質(zhì)數(shù)關(guān)系找最大公因數(shù),教師要引導(dǎo)學(xué)生發(fā)現(xiàn)這個方法并會運用。教師要注意讓學(xué)生經(jīng)歷知識的形成過程,要重視引發(fā)學(xué)生的數(shù)學(xué)思考。

          四.教學(xué)目標(biāo):

          知識與技能:探索找兩個數(shù)的公因數(shù)的方法,會用列舉法找出兩個數(shù)的公因數(shù)和最大公因數(shù)。

          過程與方法:經(jīng)歷找兩個數(shù)的公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。

          情感、態(tài)度與價值:培養(yǎng)學(xué)生對學(xué)習(xí)數(shù)學(xué)的興趣。通過觀察、分析、歸納等數(shù)學(xué)活動,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考的條理性。

          五.教學(xué)難點分析:

          教學(xué)重點:探索找兩個數(shù)的公因數(shù)的方法,會用列舉法找出兩個數(shù)的公因數(shù)和最大公因數(shù)。

          教學(xué)難點:經(jīng)歷找兩個數(shù)的'公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。

          六.教學(xué)課時:

          一課時

          七.教學(xué)過程:

          (一)復(fù)習(xí)

          師:出示3×4=12,( )是12的因數(shù)。

          生:3和4是12的因數(shù)。

          (二)探究新知

          1、認(rèn)識公因數(shù)和最大公因數(shù)

          (1)師:除了3和4是12的因數(shù),12的因數(shù)還有哪些?

          生獨立完成后匯報,板書 12的因數(shù)有:1、2、3、4、6、12。

          師:要找出一個數(shù)的全部因數(shù),需要注意什么?

          生:要一對一對有序地寫,這樣才不會遺漏。

          師:照這樣的方法,請你寫出18的全部因數(shù)。

          生獨立寫后匯報:18的因數(shù)有:1、2、3、6、9、18

         。ù藭r出示集合圖)

          師:在這兩個圈里,應(yīng)該填上什么數(shù)?請大家完成正在書45頁上。

          生做后匯報師板書于圈中。

         。2)師:請大家找一找在12和18的因數(shù)中,有沒有相同的因數(shù),相同的因數(shù)有哪幾個。

          生找出12和18相同的因數(shù)有:1、2、3、6

          師:像這樣,既是12的因數(shù),又是18的因數(shù),我們就說這些數(shù)都是12和18的公因數(shù)。

          師:這里最大的公因數(shù)是幾?

          生:最大是6。

          師:6就是12和18的最大公因數(shù)。這就是我們這節(jié)課學(xué)習(xí)的內(nèi)容——找最大公因數(shù)。

          板書課題:找最大公因數(shù)

         。ù藭r出示集合圖)

          師:中間這一區(qū)域有什么特征?應(yīng)該填什么數(shù)字?獨立思考后小組討論

         。ㄉ纸M討論)

          匯報:中間區(qū)域是12的因數(shù)和18的因數(shù)的交叉區(qū)域,所填的數(shù)應(yīng)該既是12的因數(shù)又是18的因數(shù),也就是12和18的公因數(shù)填在這里。

          師:請大家完成這個題。(生做后訂正)

          2、探索找最大公因數(shù)的方法

          (1)列舉法

          剛才我們找最大公因數(shù)的方法叫做列舉法。(板書:列舉法)

          請大家用這種方法找出下面每組數(shù)的最大公因數(shù)。 9和15

          (2)利用因數(shù)關(guān)系找

          師:請大家翻到書第45頁,獨立完成第一題。

          生匯報:

          8的因數(shù): 1、2、4、8

          16的因數(shù): 1、2、4、8、16

          8和16的公因數(shù): 1、2、4、8

          8和16的最大公因數(shù)是 8

          師引導(dǎo)學(xué)生觀察最后一句,想想8和16之間是什么關(guān)系,與他們的最大公因數(shù)有什么關(guān)系?

          生獨立思考后分組討論。

          生匯報:8是16的因數(shù),所以8和16的最大公因數(shù)就是8。

          師引導(dǎo)生歸納并板書:如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個數(shù)的最大公因數(shù)。(板書:用因數(shù)關(guān)系找)

          練習(xí):找出下面每組數(shù)的最大公因數(shù)。 4和12 28和7 54和9

          (3)利用互質(zhì)數(shù)關(guān)系找

          師:請大家獨立完成第二題。

          生匯報:

          5的因數(shù): 1、5

          7的因數(shù): 1、7

          5和7的最大公因數(shù)是 1

          師引導(dǎo)學(xué)生觀察最后一句5和7之間是什么關(guān)系,與他們的最大公因數(shù)有什么關(guān)系?

          生獨立思考后分組討論。

          生匯報:5和7都是質(zhì)數(shù),所以5和7的最大公因數(shù)就是1。

          師:像這樣只有公因數(shù)1的兩個數(shù)叫互質(zhì)數(shù)。如果兩個數(shù)是互質(zhì)數(shù),那么它們的公因數(shù)只有1。(板書:用互質(zhì)數(shù)關(guān)系找)

          練習(xí):找出下面每組數(shù)的最大公因數(shù)。 4和5 11和7 8和9

          (4)整理找最大公因數(shù)的方法

          師:今天我們學(xué)習(xí)了用哪些方法找最大公因數(shù)?

          生:列舉法,用因數(shù)關(guān)系找,用互質(zhì)數(shù)關(guān)系找。

          師:我們在做題時,要觀察給出的數(shù)字的特征選用不同的方法。

          (三)練習(xí)

          書46頁3、4、5題。生獨立完成,師巡視指導(dǎo)。

          (四)全課小結(jié)

          這節(jié)課你有什么收獲?

          八.課堂練習(xí):

          在括號里填寫每組數(shù)的最大公因數(shù)

          6和18( ) 14和21( ) 15和25( )

          12和8( ) 16和24( ) 18和27( )

          9和10( ) 17和18( ) 24和25( )

          九.作業(yè)安排:

          完成練習(xí)冊上的習(xí)題

          十. 附錄(教學(xué)資料及資源):

          1、教師用書:北師大版五年級數(shù)學(xué)上冊

          2、數(shù)字卡片

          十一. 自我問答:

          短除法求最大公因數(shù)在書中暫時沒有出現(xiàn),只在求最小公倍數(shù)后以“你知道嗎”的形式出現(xiàn),但這種方法我覺得很實用,不知教材的意圖是什么?究竟怎樣處理?

          教學(xué)反思:

          本節(jié)課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進(jìn)行教學(xué),通過解決故事中的問題,讓學(xué)生逐層深入地懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,在填寫公因數(shù)時,學(xué)生往往容易出現(xiàn)重復(fù)的現(xiàn)象。

          在教學(xué)過程中,我鼓勵孩子歸納總結(jié)找最大公因數(shù)特征和方法。先看兩個數(shù)是不是倍數(shù)關(guān)系,如果是倍數(shù)關(guān)系,那么小的那個數(shù)就是最大公因數(shù)。如果兩個數(shù)是互質(zhì)數(shù)或者是相鄰的兩個自然數(shù),那么這兩個數(shù)的最大公因數(shù)就是1。

          找最大公因數(shù)時,我向?qū)W生介紹了短除法,當(dāng)數(shù)字比較大時,用短除法比較簡單。

        《最大公因數(shù)》教學(xué)反思13

          【多問幾個為什么】

          1、出差兩天,今日回來,與孩子們繼續(xù)暢游《公倍數(shù)和公因數(shù)》單元。

          思維一旦被激發(fā),就有點一發(fā)不可收拾。

          從第一課時開始,孩子們與我是完全浸潤在了公倍數(shù)與公因數(shù)的歡樂中。我的態(tài)度也從一開始對教材安排的質(zhì)疑,到現(xiàn)在極力擁護教材的安排。

          只有放手給孩子們一個構(gòu)建的機會,孩子們才能在構(gòu)建過程中頻頻發(fā)起智慧的邀請。

          在學(xué)習(xí)公倍數(shù)的時候,課上巧遇“思維定勢”,孩子們以為兩個數(shù)的公倍數(shù)就是它們的乘積;但是在解決書本上的6和9的公倍數(shù)是多少時,猛然發(fā)現(xiàn),這個方法不能次次實施。孩子們提出了一系列猜想。其中小彧發(fā)現(xiàn),如果將錯就錯,把6和9相乘,也可以,但是要除以它們的最大公因數(shù)。并且,小彧通過舉例,把這個發(fā)現(xiàn)從特殊上升到了一般。

          因為當(dāng)時還未學(xué)習(xí)公因數(shù),我就躲避了問題的內(nèi)里。

          小何在備學(xué)中說,我最大的問題是,我知道小彧的說法是對的,但是為何6和9兩個數(shù)相乘,再除以最大公因數(shù),得到的就是最小公倍數(shù),其中的道理是什么?

          呵呵,好家伙,知道了是什么,自覺追問了為什么?

          明天我們要對本章節(jié)的內(nèi)容做個整體梳理,我準(zhǔn)備結(jié)合短除法,讓孩子們意識到小何追問思想的可貴,以及這個方法可行之處究竟是什么。

          2、孩子們很愛思考,從第一課時的下課時間開始,就發(fā)現(xiàn)兩個數(shù)若有倍數(shù)關(guān)系,它們的最小公倍數(shù)很奇妙,就是較大的數(shù)。

          第二課時,我們通過教材上的習(xí)題,一起說了這個規(guī)律,即訴說了看到的表面現(xiàn)象。

          孩子們還不甘心,提出了問題,為什么兩個數(shù)是倍數(shù)關(guān)系,最小公倍數(shù)就是大的那個數(shù)呢?

          一時安靜后,好幾個孩子舉高手,并說清了原因:大數(shù)本身是小數(shù)的倍數(shù),大數(shù)又是自己最小的倍數(shù),理所應(yīng)當(dāng)是兩數(shù)的最小公倍數(shù)。

          3、公倍數(shù)的種種猜想,在學(xué)習(xí)公因數(shù)的`時候,思想方法得到了遷移。

          第一課時,孩子們提出各種猜想,求最大公因數(shù),會不會也像公倍數(shù)中兩個數(shù)有特殊關(guān)系,就能輕松的求出結(jié)果?

          【孩子們+數(shù)學(xué)=好玩。】

          要做找公倍數(shù)的上本子作業(yè)了,我板書給孩子們看書寫格式,他們拉著臉。

          我說,我小時候,就是寫這么多字的。不過,我可以介紹你們寫一種簡單的,用“【】”包住兩個數(shù),中間用逗號隔開,這樣就能代替寫這么多字。孩子們一看,多方便呀!居然都“啪啪啪”鼓起掌來,哈!

          我滿懷愜意的說,你們的掌聲與微笑中包含著對數(shù)學(xué)簡潔美的追求!

          孩子們爽歪歪了。

          不過事后,一個資深老師告訴我,這個環(huán)節(jié),如果讓孩子們創(chuàng)造一下,如何追求簡潔。也許,這樣對于孩子們的思維發(fā)展更有效。一想,我也同意這般。

          一節(jié)課,只要知識目標(biāo)達(dá)成,那么,過程方法與情意目標(biāo)是不可分割的。學(xué)生在達(dá)成過程方法目標(biāo)的旅程中,豈有不快樂,不感受到豐富體驗的?

        《最大公因數(shù)》教學(xué)反思14

          本節(jié)課教學(xué)的內(nèi)容是認(rèn)識公因數(shù)、最大因數(shù)以及求兩個數(shù)的最大公因數(shù)的方法,這些知識是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上教學(xué)的。結(jié)合本節(jié)課的特點,聯(lián)系本班學(xué)生的實際情況,教師在教學(xué)過程中做了如下的嘗試

          一、適時地滲透集合思想。在教學(xué)例1時,解題過程不僅呈現(xiàn)了用列舉法解決問題。還引導(dǎo)學(xué)生用集合圖來表示答案,從而滲透了集合思想,為后續(xù)的學(xué)習(xí)奠定感性認(rèn)識。

          二、關(guān)注學(xué)生探究活動的空間,將自主探究活動貫徹始終。在教學(xué)中,教師為學(xué)生創(chuàng)設(shè)了三次自主探究的機會。即一在情境中通過動手操作認(rèn)識公因數(shù),二用集合圖表示因數(shù)之間的關(guān)系,三用自己的.方法求出兩個數(shù)的最大公因數(shù)。在這幾次的探究活動中,教師始終積極地調(diào)動學(xué)生的情感,啟發(fā)他們主動參與,引導(dǎo)學(xué)生感知、理解,從而在腦中形成系統(tǒng)的知識體系。

          本節(jié)課是教學(xué)運用最大公因數(shù)的有關(guān)知識來解決生活中的實際問題。通過創(chuàng)設(shè)生活情境,讓學(xué)生借助學(xué)具擺一擺,算一算或在紙上用彩筆畫一畫的方法把出現(xiàn)的幾種情況記錄下來,既提高學(xué)生的學(xué)習(xí)積極性,也讓學(xué)生體會到新知與生活的密切聯(lián)系。同時,通過引導(dǎo)學(xué)生自主探索、組織交流并驗證結(jié)論,讓學(xué)生體會獲得成功的喜悅,更加積極地探索新知,掌握所學(xué)知識。

          本節(jié)課的不足之處在于練習(xí)部分時間過于倉促,沒有足夠的時間讓學(xué)生交流與理解,部分學(xué)困生掌握不夠到位。這需要教師在今后教堂中合理安排時間,避免時間過于緊迫。

        《最大公因數(shù)》教學(xué)反思15

          “因數(shù)和倍數(shù)”的知識,向來是小學(xué)數(shù)學(xué)教學(xué)的難點!白畲蠊驍(shù)”這節(jié)課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進(jìn)行的,通過這節(jié)課的學(xué)習(xí),學(xué)生會說出兩個數(shù)的公因數(shù)和最大公因數(shù),會求兩個數(shù)的最大公因數(shù),并為后面學(xué)習(xí)分?jǐn)?shù)的約分打好基礎(chǔ)。反思這節(jié)課我認(rèn)為有以下幾點:

          一、精心設(shè)計數(shù)學(xué)活動,讓學(xué)生大膽探究。

          1、通過找8和12的因數(shù),引出公因數(shù)的概念。

          教師引導(dǎo)學(xué)生先寫出8和12的因數(shù),再觀察發(fā)現(xiàn)8和12有公有的因數(shù),自然引出了公因數(shù)的概念。然后通過集合圈的形式,直觀呈現(xiàn)什么是公因數(shù),什么又是最大公因數(shù)。促進(jìn)學(xué)生建立”公因數(shù)和最大公因數(shù)”的概念。

          2、通過找18和27的最大公因數(shù),掌握找最大公因數(shù)的方法。

          掌握了公因數(shù)的概念之后,教師放手給予學(xué)生足夠的時間,讓學(xué)生自主探究找最大公因數(shù)的方法。交流反饋時,考慮到中下水平的'學(xué)生,教師只匯報了書本中的三種基本方法,并沒有提到短除法。

          二、思路清晰,環(huán)環(huán)相扣。

          本節(jié)課,教師從認(rèn)識公因數(shù)——理解最大公因數(shù)——探究找最大公因數(shù)的方法——相應(yīng)的練習(xí)鞏固這幾個環(huán)節(jié)入手,每個環(huán)節(jié)都是層層遞進(jìn),環(huán)環(huán)相扣,促進(jìn)了學(xué)生對概念的理解。

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者!痹诒竟(jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計成為學(xué)生探索問題,解決問題的過程,各個環(huán)節(jié)的學(xué)習(xí)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個教學(xué)的過程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過學(xué)生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學(xué)生個性得到發(fā)揮。

        【《最大公因數(shù)》教學(xué)反思】相關(guān)文章:

        《最大公因數(shù)》教學(xué)反思07-24

        公因數(shù)和最大公因數(shù)教案04-03

        最大公因數(shù)說課稿01-12

        《最大的書》教學(xué)反思01-21

        《最大的麥穗》教學(xué)反思12-22

        《最大的“書”》教學(xué)反思04-12

        最大的書教學(xué)反思10-08

        五年級數(shù)學(xué)《最大公因數(shù)》教學(xué)反思(通用11篇)04-26

        《最大的書》教學(xué)反思15篇03-01