積的變化規(guī)律教學(xué)反思
作為一名優(yōu)秀的人民教師,我們的工作之一就是課堂教學(xué),對學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,快來參考教學(xué)反思是怎么寫的吧!下面是小編收集整理的積的變化規(guī)律教學(xué)反思,歡迎大家分享。
積的變化規(guī)律教學(xué)反思1
《積的變化規(guī)律》是教材四年級上冊第三單元的內(nèi)容,它是在學(xué)生掌握了三位數(shù)乘兩位數(shù)的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課主要引導(dǎo)學(xué)生探索當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化情況,從中歸納出積的變化規(guī)律。
在本課教學(xué)中,我注重讓學(xué)生充分參與積的變化這個(gè)規(guī)律的發(fā)現(xiàn),讓學(xué)生在充分地觀察、大量的舉例中去感悟積的變化的規(guī)律,充分調(diào)動(dòng)學(xué)生參與的主動(dòng)性,初步構(gòu)建自己的認(rèn)知體系。讓學(xué)生自己經(jīng)歷研究問題的一般方法是:研究具體問題——?dú)w納發(fā)現(xiàn)規(guī)律——解釋說明規(guī)律——舉例驗(yàn)證規(guī)律。讓學(xué)生真正成為了課堂的主人,給學(xué)生留出了充足的探索空間,讓學(xué)生自主地進(jìn)行探索與交流。老師只是適時(shí)補(bǔ)充或糾正。我在練習(xí)題的設(shè)計(jì)上,既注重了基礎(chǔ)知識的鞏固,又注意了不同層次學(xué)生的`需求。我不僅使學(xué)生了解課本上的積的變化規(guī)律:兩數(shù)想乘,一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘(或除以)幾,積就乘(或除以)幾;我還通過練習(xí),讓學(xué)生感知了:兩數(shù)相乘,一個(gè)因數(shù)乘(或除以)幾,另一個(gè)因數(shù)除以(或乘)幾,積不變的規(guī)律;兩數(shù)相乘,兩個(gè)因數(shù)分別擴(kuò)大若干倍,積就擴(kuò)大兩因數(shù)擴(kuò)大倍數(shù)的積的倍數(shù)。如:6×2=1260×20=1200。拓展了學(xué)生的思路,我認(rèn)為平時(shí)的教學(xué)不應(yīng)受教材的框框限制,適合自己,適合學(xué)生,教會(huì)學(xué)生思考的方法,培養(yǎng)學(xué)生的數(shù)學(xué)思想是最重要的。
但我反思自己課堂上的一個(gè)現(xiàn)象就是:學(xué)生通過舉例、觀察對積的變化規(guī)律有了初步的感悟、也有了初步的理解,但學(xué)生在描述規(guī)律時(shí),語言總是不夠準(zhǔn)確、表述總是不夠完整。“語言表達(dá)是學(xué)生思維的全面展現(xiàn)”,學(xué)生們對于新知內(nèi)容的理解在很大程度上靠語言描繪去反饋,當(dāng)學(xué)生的概括能力受挫時(shí),我想:首先應(yīng)該反思的是我們的教學(xué)是否讓學(xué)生真正明白了。當(dāng)學(xué)生真正明白了一道、兩道、十道,甚至更多的題目后,怎樣概括,而不是讓學(xué)生就題論題似乎也是個(gè)問題。今后我要不斷嘗試充分地發(fā)揮自己的主導(dǎo)作用,怎樣抓住一些關(guān)鍵的例子、抓住一些關(guān)鍵的詞語讓學(xué)生去推敲、去體會(huì),最終引導(dǎo)學(xué)生完整、準(zhǔn)確地描述出積變化的規(guī)律,并通過一些重點(diǎn)詞的理解,使學(xué)生更加深刻地理解規(guī)律,構(gòu)建起完整的認(rèn)知體系。切不可因?yàn)榕碌⒄`進(jìn)度、怕麻煩、怕羅嗦而剝奪了學(xué)生說的權(quán)利,剝奪了鍛煉學(xué)生思維的機(jī)會(huì),使主導(dǎo)霸道地代替了主體。
另外,只有讓學(xué)生真正深刻地理解規(guī)律,才能熟練、恰當(dāng)?shù)剡\(yùn)用規(guī)律,而不是生搬硬套。
例如:1、貨車在普通公路上以45千米/時(shí)的速度行駛,4小時(shí)可以行多少千米?8小時(shí)呢?12小時(shí)呢?
2、一塊長方形的果園,長是18米,面積是108平方米。如果長不變,寬擴(kuò)大3倍,擴(kuò)大后的果園面積是多少平方米?很顯然,這兩道題用積的變化規(guī)律來解決是最簡便快捷的方法。而學(xué)生只有真正深刻地理解了積的變化規(guī)律,才會(huì)活學(xué)活用,而不至于再用老法子去繞圈解決,從而使學(xué)生更深體會(huì)到學(xué)數(shù)學(xué)、用數(shù)學(xué),生活中處處有數(shù)學(xué)。
積的變化規(guī)律教學(xué)反思2
今天教學(xué)了積的變化規(guī)律,昨天布置了預(yù)習(xí)作業(yè):計(jì)算、再觀察比較下列算式30*24=720 (30*2)*24= (30*4)*24= 30*(24*5)= 后面三個(gè)算式等號左邊與第一個(gè)算式左邊比,什么發(fā)生了什么變化,算出后三題的積再與第一題的積比一比,你有什么發(fā)現(xiàn)? 30*24=720 (30÷2)*24= (30÷5)*24= 30*(24÷6)= 后面三個(gè)算式等號左邊與第一個(gè)算式左邊比,什么發(fā)生了什么變化,算出后三題的積再與第一題的積比一比,你有什么發(fā)現(xiàn)?學(xué)生在課始交流計(jì)算結(jié)果與自己的人發(fā)現(xiàn)時(shí),習(xí)慣于表述成:一個(gè)因數(shù)不變,另一個(gè)因數(shù)擴(kuò)大幾倍,積也擴(kuò)大相同的倍數(shù);一個(gè)因數(shù)不變,另一個(gè)因數(shù)縮小幾倍,積也縮小相同的倍數(shù)。為了驗(yàn)證大家的發(fā)現(xiàn),我們首先讓大家用書中的例題驗(yàn)證,再讓大家各舉一個(gè)例子驗(yàn)證得出積得變化規(guī)律。但遺憾的是在后面的練習(xí)中學(xué)生還是習(xí)慣于直接計(jì)算積卻不用所學(xué)的積得變化規(guī)律去求積,在我的追問下好的學(xué)生想到根據(jù)記得變化規(guī)律直接用原來的'積乘幾求到現(xiàn)在的積。我也反思我的教學(xué)中是否有導(dǎo)致學(xué)與用剝離的現(xiàn)象,可能在開始的教學(xué)中教師只注重學(xué)生得出規(guī)律的結(jié)果反而削弱了學(xué)生對規(guī)律本身的理解與實(shí)際應(yīng)用,于是在課即將結(jié)束前我出示了題目:根據(jù)275*46=12650 直接寫出275*92= 的結(jié)果并說明解題思路,到此學(xué)生才全部理解了記得變化規(guī)律的有用性。雖然是后知后覺但畢竟是真正有了“知覺”了。
積的變化規(guī)律教學(xué)反思3
《積的變化規(guī)律》主要引導(dǎo)學(xué)生探索“當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化情況”,從中歸納出積的變化規(guī)律。通過這個(gè)過程的探索,不但讓學(xué)生理解兩數(shù)相乘時(shí)積的變化隨其中一個(gè)因數(shù)的'變化而變化,同時(shí)體會(huì)事物間是密切聯(lián)系的,培養(yǎng)學(xué)生遷移類推的能力。
這堂課我以幾組口算乘法算式為載體?谒悱h(huán)節(jié)結(jié)束后,我問:“你能根據(jù)每組算式的特點(diǎn)接下去再寫2個(gè)算式嗎?”通過這一環(huán)節(jié),只要學(xué)生能寫出算式,那么他基本上對規(guī)律就有了大致的了解,雖然說不出,也心領(lǐng)神會(huì)了。
但在接下來的練習(xí)中,學(xué)生突出的表現(xiàn)是不能準(zhǔn)確的找到積的變化規(guī)律,學(xué)生似乎只停留在知識的表面,在教完這節(jié)課后,留給自己是無盡的思考,為什么學(xué)生開始學(xué)習(xí)時(shí)興趣高漲,到后來的沉默,說明學(xué)生沒有正真的掌握,接下來只好培養(yǎng)學(xué)生遷移類推培養(yǎng)學(xué)生遷移類推的能力和解決問題培養(yǎng)學(xué)生遷移類推的能力,通過學(xué)生多說多練來改善了。
積的變化規(guī)律教學(xué)反思4
《積的變化規(guī)律》是人教版四年級上冊第三單元的內(nèi)容,它是在學(xué)生掌握了三位數(shù)乘兩位數(shù)的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課主要引導(dǎo)學(xué)生探索當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化情況,從中歸納出積的變化規(guī)律。
在本課教學(xué)中,我注重讓學(xué)生充分參與積的變化這個(gè)規(guī)律的發(fā)現(xiàn),讓學(xué)生在充分地觀察、大量的舉例中去感悟積的變化的規(guī)律,充分調(diào)動(dòng)學(xué)生參與的主動(dòng)性,初步構(gòu)建自己的認(rèn)知體系。讓學(xué)生自己經(jīng)歷研究問題的一般方法是:研究具體問題——?dú)w納發(fā)現(xiàn)規(guī)律——解釋說明規(guī)律——舉例驗(yàn)證規(guī)律。讓學(xué)生真正成為了課堂的主人,給學(xué)生留出了充足的探索空間,讓學(xué)生自主地進(jìn)行探索與交流。老師只是適時(shí)補(bǔ)充或糾正。我在練習(xí)題的設(shè)計(jì)上,既注重了基礎(chǔ)知識的鞏固,又注意了不同層次學(xué)生的需求。我不僅使學(xué)生了解課本上的積的變化規(guī)律:兩數(shù)想乘,一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘(或除以)幾,積就乘(或除以)幾;我還通過練習(xí),讓學(xué)生感知:兩數(shù)相乘,一個(gè)因數(shù)乘(或除以)幾,另一個(gè)因數(shù)除以(或乘)幾,積不變的規(guī)律;還讓學(xué)生感知兩數(shù)相乘,兩個(gè)因數(shù)都擴(kuò)大相同的倍數(shù),積就擴(kuò)大這兩個(gè)倍數(shù)的乘積倍。如:6×2=12 (6×10)×(2×10)=60×20=1200。拓展了學(xué)生的思路,我認(rèn)為平時(shí)的教學(xué)不應(yīng)受教材的框框限制,適合自己,適合學(xué)生,教會(huì)學(xué)生思考的方法,培養(yǎng)學(xué)生的數(shù)學(xué)思想是最重要的`。
雖然課堂上學(xué)生通過舉例、觀察對積的變化規(guī)律有了初步的感悟、也有了初步的理解,但學(xué)生在描述規(guī)律時(shí),語言總是不夠準(zhǔn)確、表述總是不夠完整。“語言表達(dá)是學(xué)生思維的全面展現(xiàn)”,學(xué)生們對于新知內(nèi)容的理解在很大程度上靠語言描繪去反饋,當(dāng)學(xué)生的概括能力受挫時(shí),我想:首先應(yīng)該反思的是我們的教學(xué)是否讓學(xué)生真正明白了。當(dāng)學(xué)生真正明白了一道、兩道、十道,甚至更多的題目后,怎樣概括,而不是讓學(xué)生就題論題似乎也是個(gè)問題。今后我要不斷嘗試充分地發(fā)揮自己的主導(dǎo)作用,怎樣抓住一些關(guān)鍵的例子、抓住一些關(guān)鍵的詞語讓學(xué)生去推敲、去體會(huì),最終引導(dǎo)學(xué)生完整、準(zhǔn)確地描述出積變化的規(guī)律,并通過一些重點(diǎn)詞的理解,使學(xué)生更加深刻地理解規(guī)律,構(gòu)建起完整的認(rèn)知體系。切不可因?yàn)榕碌⒄`進(jìn)度、怕麻煩、怕羅嗦而剝奪了學(xué)生說的權(quán)利,剝奪了鍛煉學(xué)生思維的機(jī)會(huì),使主導(dǎo)霸道地代替了主體。
另外,只有讓學(xué)生真正深刻地理解規(guī)律,才能熟練、恰當(dāng)?shù)剡\(yùn)用規(guī)律,而不是生搬硬套。例如:1、貨車在普通公路上以45千米/時(shí)的速度行駛,4小時(shí)可以行多少千米?8小時(shí)呢?12小時(shí)呢? 2、一塊長方形的果園,長是18米,面積是108平方米。如果長不變,寬擴(kuò)大3倍,擴(kuò)大后的果園面積是多少平方米? 很顯然,這兩道題用積的變化規(guī)律來解決是最簡便快捷的方法。而學(xué)生只有真正深刻地理解了積的變化規(guī)律,才會(huì)活學(xué)活用,而不至于再用老方法去繞圈解決,從而使學(xué)生更深體會(huì)到學(xué)數(shù)學(xué)、用數(shù)學(xué),生活中處處有數(shù)學(xué)。
積的變化規(guī)律教學(xué)反思5
第一輪“達(dá)標(biāo)立標(biāo)”課,已圓滿的結(jié)束,經(jīng)過三年級數(shù)學(xué)組老師的共同努力,從選定內(nèi)容,到一次次備課,修改教案,再到重新上課,在于主任的引領(lǐng)和郭老師的幫助下,我們順利的完成了《積的變化規(guī)律》的研討。在一次次的磨課中不斷有新的靈感,而課堂也日趨完善,在整個(gè)磨課過程中自己成長并收獲著。
第一次上課是由杜老師執(zhí)教的,通過呈現(xiàn)課本情景圖,讀信息,由談話導(dǎo)入,通過讀信息提問題,拋出需要學(xué)生解決的問題,從而引出了課題,學(xué)生通過老師提供的自學(xué)指導(dǎo)進(jìn)行自學(xué),師生交流規(guī)律,然后就是規(guī)律的應(yīng)用。整節(jié)課符合先學(xué)后教的原則,等杜老師上完這節(jié)課之后,我們又靜下心來反思,課是上完了,但是是否所有的學(xué)生都感受到積的變化規(guī)律了?是否每個(gè)學(xué)生都按照先學(xué)后教進(jìn)行學(xué)習(xí)了? 在于主任的及時(shí)點(diǎn)撥下,我們沒有靈活的運(yùn)用先學(xué)后教,從而使整節(jié)課的教學(xué)流程及環(huán)節(jié)顯得有些牽強(qiáng)。本節(jié)課是一節(jié)找規(guī)律的課,學(xué)生應(yīng)該經(jīng)歷從“猜測→驗(yàn)證→得出正確結(jié)論”,通過這些環(huán)節(jié),讓學(xué)生充分感知規(guī)律的來源和學(xué)習(xí)數(shù)學(xué)的嚴(yán)謹(jǐn)性。在教研組老師們的質(zhì)疑與提醒下,我們又對課進(jìn)行了重新的修改,讓學(xué)生真正體驗(yàn)“猜測→驗(yàn)證→得出正確結(jié)論”. 同時(shí)把結(jié)論從原來的“一個(gè)因數(shù)不變,另一個(gè)因數(shù)擴(kuò)大到原來的幾倍,積就擴(kuò)大到原來的幾倍”,修改為便于學(xué)生理解的“一個(gè)因數(shù)乘幾,積就乘幾”。同時(shí)也對本節(jié)課的知識有一個(gè)適當(dāng)?shù)臄U(kuò)展”一個(gè)因數(shù)不變,另一個(gè)因數(shù)除以幾,積也除以幾”.
對課進(jìn)行了調(diào)整,第二次上課是有畢老師進(jìn)行執(zhí)教.先由一組口算導(dǎo)入,交流解題的好方法,從而引出課題,以以溫馨提示出示自學(xué)指導(dǎo),整節(jié)課經(jīng)歷了學(xué)生大膽的猜測,驗(yàn)證,最后得出結(jié)論, 整節(jié)課充分體現(xiàn)了“找規(guī)律”課型的特點(diǎn)。在整個(gè)授課過程中,畢老師思路清晰,環(huán)環(huán)相扣。如果能夠認(rèn)真傾聽孩子的問題,對孩子的問題進(jìn)行跟蹤提問,這樣的課堂還會(huì)更緊揍,更有激情一些。
反思自己的課堂教學(xué)
我是三年級組最后一輪上課的老師,在錄播教室上課給了充分學(xué)習(xí)的機(jī)會(huì),不禁對自己的一言一行有充分的了解,而且能更好的學(xué)習(xí)到優(yōu)秀老師的亮點(diǎn)。講完課,沒有感覺到輕松,反而多了幾分沉重。通過這節(jié)課,認(rèn)真總結(jié)了自己在教學(xué)上的一些不足之處。
1、要認(rèn)真?zhèn)浜谜n,每個(gè)細(xì)節(jié)落實(shí)到位
講課之前聽了同組三個(gè)老師的授課,以為自己對整個(gè)教學(xué)思路和教學(xué)環(huán)節(jié)都有了一定的了解,所以在備課方面沒有盡全力去認(rèn)真對待,導(dǎo)致整節(jié)課過度環(huán)節(jié)過渡語不夠完善,顯得課堂不夠緊湊。如,做完口算后,問“有什么好方法做的這么快” 應(yīng)該說設(shè)計(jì)具有開放性,起到了激活學(xué)生思維的作用?缮贤暾n,細(xì)細(xì)一琢磨,感覺很不好,我的“預(yù)設(shè)”沒有達(dá)到目的,對課堂提問的“度”也沒有把握好,課題出現(xiàn)的有點(diǎn)突然。所以一節(jié)課不單單是備好教案,更要備好孩子,考慮好孩子會(huì)出現(xiàn)的問題,自己能夠及時(shí)的`應(yīng)付。
二、規(guī)范自己的課堂語言
反思自己的課堂教學(xué),自己激勵(lì)和表揚(yáng)孩子的語言用的較少,而孩子則更多的需要老師的鼓勵(lì)和評價(jià),而更多時(shí)候用的則是命令孩子的語言。另外,課堂上應(yīng)該靜下心來認(rèn)真傾聽孩子的發(fā)言,而自己的課堂則是老師說的多,說多了孩子就會(huì)用依賴性。課堂真的應(yīng)該放手多讓孩子說,但是老師的總結(jié)要起到一個(gè)畫龍點(diǎn)睛的作用。
三、認(rèn)真對待每一節(jié)家常課,鍛煉自己
一節(jié)課40分鐘,而學(xué)生知識的取得正是靠這一節(jié)節(jié)的家常課。針對這次講課,自己一定要認(rèn)真反思克服不足,認(rèn)真準(zhǔn)備好每一節(jié)課,要運(yùn)用好課堂40分鐘。
同一教學(xué)內(nèi)容不同教學(xué)風(fēng)格,使我又一次深刻體驗(yàn)到,磨課的重要性,如果每節(jié)課能從研究備課和上課開始,一節(jié)課一節(jié)課地加以研究和積累,就能增強(qiáng)自己可持續(xù)教學(xué)的能力,促使自己專業(yè)化成長。在今后的教學(xué)中,要嚴(yán)格要求自己,盡自己最大努力做一個(gè)負(fù)責(zé)任的好老師。
積的變化規(guī)律教學(xué)反思6
教材分析
《積的變化規(guī)律》是人教版四年級上冊第三單元的例題、
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了三位數(shù)乘兩位數(shù)和使用計(jì)算器進(jìn)行計(jì)算的基礎(chǔ)上,引導(dǎo)學(xué)生借助計(jì)算器探索積的一些變化規(guī)律,掌握這些規(guī)律,為學(xué)生進(jìn)一步加深對乘法運(yùn)算的理解以及今后自主探索和理解小數(shù)乘除法的計(jì)算方法做好準(zhǔn)備。
教材首先出示2×6 =12、20×6=120、200×6=1200 ,讓學(xué)生依據(jù)給出的乘法算式,探索當(dāng)一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘一個(gè)數(shù),得到的積會(huì)有什么變化,引導(dǎo)學(xué)生作出猜想。再出示20×4=80,10×4=40,5×4=20,引導(dǎo)學(xué)生觀察,發(fā)現(xiàn)規(guī)律,提出猜想。
學(xué)情分析
該內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了三位數(shù)乘兩位數(shù)和使用計(jì)算器進(jìn)行計(jì)算的基礎(chǔ)上,引導(dǎo)學(xué)生借助計(jì)算器探索積的一些變化規(guī)律,掌握這些規(guī)律,為學(xué)生進(jìn)一步加深對乘法運(yùn)算的理解以及今后自主探索和理解小數(shù)乘除法的計(jì)算方法做好準(zhǔn)備。
教學(xué)目標(biāo)
一、知識與技能:
。1) 使學(xué)生探索并掌握一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘幾,積也隨著乘幾的變化規(guī)律。
二、過程與方法:
。1)經(jīng)歷觀察、比較、猜想、驗(yàn)證和歸納等一系列的數(shù)學(xué)活動(dòng),體驗(yàn)探索和發(fā)現(xiàn)數(shù)學(xué)規(guī)律的基本方法,進(jìn)一步獲得一些探索數(shù)學(xué)規(guī)律的經(jīng)驗(yàn),發(fā)展思維能力。
三、情感態(tài)度價(jià)值觀:
。1)通過學(xué)習(xí)活動(dòng)的參與,培養(yǎng)學(xué)生合作交流的.能力,并在探索活動(dòng)中感受數(shù)學(xué)結(jié)論的嚴(yán)謹(jǐn)性與正確性,獲得成功的體驗(yàn),增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和自信心。
教學(xué)重點(diǎn)和難點(diǎn)
1.教學(xué)重點(diǎn):
使學(xué)生探索并掌握一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘幾(或除以幾),積也隨著乘幾(或除以幾)的變化規(guī)律。
2、教學(xué)難點(diǎn):在探索和發(fā)現(xiàn)規(guī)律上,能更多的體驗(yàn)一般策略和方法,發(fā)展數(shù)學(xué)思考。
積的變化規(guī)律教學(xué)反思7
《積的變化規(guī)律》是在學(xué)生掌握一定的乘除法計(jì)算方法和用計(jì)算器進(jìn)行計(jì)算的基礎(chǔ)上教學(xué)的,本課用計(jì)算器來探索一些積的變化規(guī)律。
本課的教學(xué)思路:用口算導(dǎo)入,其中口算中安排了一些因數(shù)變化的對比題,如:25×4和25×8等?谒阃瓿珊螅處煱鍟3564×158=?你能口算嗎?怎么辦?使學(xué)生明白用計(jì)算器方便我們進(jìn)行大數(shù)目的或復(fù)雜的運(yùn)算。
新課教學(xué),出示教材中的例題,幫助學(xué)生理解題意:積的變化是什么意思?跟誰比變化了?怎樣計(jì)算?在計(jì)算前,先讓學(xué)生猜一猜:你覺得積會(huì)怎樣變?能提出你的.猜想嗎?然后學(xué)生借助計(jì)算器進(jìn)行計(jì)算,填寫教材中的表格。集體交流,提出問題:你的猜想正確嗎?那在其他的乘法算式中還有沒有這樣的規(guī)律呢?寫出一道算式,運(yùn)用剛才的方法去試一試,并在你的小組里交流。小組匯報(bào),并總結(jié)出積的變化規(guī)律——一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘幾,得到的積就是原來的積乘幾。
鞏固練習(xí),由淺入深。先是模仿例題的練習(xí),根據(jù)規(guī)律直接填表;然后是直接根據(jù)一道算式填出變化后的得數(shù);最后是應(yīng)用規(guī)律解決生活中的實(shí)際問題,如:購買同一種商品,數(shù)量發(fā)生變化,總價(jià)也跟著發(fā)生相同的變化。
課堂小結(jié),一是所學(xué)知識,二是研究問題的方法(提出猜想——舉例驗(yàn)證——得出規(guī)律——解釋應(yīng)用),同時(shí)進(jìn)一步激勵(lì)學(xué)生進(jìn)一步研究:如果乘法算式中兩個(gè)因數(shù)同時(shí)變化呢,積會(huì)怎么變?
教學(xué)后,有幾點(diǎn)體會(huì):
一、在充分經(jīng)歷中感悟。
在本課教學(xué)中,我就充分注意這一點(diǎn),注重讓學(xué)生充分參與積的變化這個(gè)規(guī)律的發(fā)現(xiàn),充分調(diào)動(dòng)學(xué)生參與的主動(dòng)性,讓學(xué)生在大量的舉例、充分地觀察中去感悟積的變化的規(guī)律,初步構(gòu)建自己的認(rèn)知體系。
二、在充分感悟中提煉。
在本課教學(xué)中,學(xué)生通過舉例、觀察對積的變化規(guī)律有了初步的感悟、也有了初步的理解,但學(xué)生在描述規(guī)律時(shí),語言總是不夠準(zhǔn)確、表述總是不夠完整。此時(shí),我充分地發(fā)揮了自己的主導(dǎo)作用,抓住一些關(guān)鍵的例子、抓住一些關(guān)鍵的詞語讓學(xué)生去推敲、去體會(huì),最終引導(dǎo)學(xué)生完整、準(zhǔn)確地描述出積變化的規(guī)律,并通過一些重點(diǎn)詞的理解,使學(xué)生更加深刻地理解規(guī)律,構(gòu)建起完整的認(rèn)知體系。
不足之處:
一、教師的語言不夠凝練。如:引導(dǎo)學(xué)生用計(jì)算器探索變化規(guī)律時(shí),提的問題太多,不利于學(xué)生獨(dú)立分析和思考。
二、缺乏耐心,不善等待。如:第1題練習(xí),當(dāng)學(xué)生沒有自覺地應(yīng)用規(guī)律進(jìn)行計(jì)算時(shí),教師缺乏耐心,直接請發(fā)現(xiàn)規(guī)律的同學(xué)起來說。如果當(dāng)時(shí)能引導(dǎo)這位同學(xué)觀察一下,因數(shù)怎樣變化的,能不能不計(jì)算就報(bào)出積是多少?等待會(huì)讓課堂和諧和大氣。
三、練習(xí)設(shè)計(jì)可以更有深度。如:設(shè)計(jì)逆向思維的練習(xí),在表格中加入已知積的變化求因數(shù)的變化;拓展練習(xí)——因數(shù)同時(shí)變化,求積等。
積的變化規(guī)律教學(xué)反思8
《積的變化規(guī)律》是人教版教材數(shù)學(xué)四年級上冊第3單元的內(nèi)容。在以前計(jì)算的過程中就已經(jīng)初步感悟過,但是沒有總結(jié)成規(guī)律,它是在學(xué)生掌握了三位數(shù)乘兩位數(shù)的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課主要引導(dǎo)學(xué)生探索當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化情況,從中歸納出積的變化規(guī)律。通過這個(gè)過程的探索,不但讓學(xué)生理解兩數(shù)相乘時(shí)積的變化隨其中一個(gè)因數(shù)的變化而變化,同時(shí)體會(huì)事物間是密切聯(lián)系的,培養(yǎng)學(xué)生遷移類推的能力。
“探索規(guī)律”是數(shù)與代數(shù)領(lǐng)域要教學(xué)的主要內(nèi)容之一。本節(jié)課的教學(xué)目標(biāo)是讓學(xué)生探索因數(shù)變化引起積的變化規(guī)律,感受發(fā)現(xiàn)數(shù)學(xué)中的規(guī)律。在教學(xué)中我引導(dǎo)學(xué)生通過觀察、口算、計(jì)算、說理、交流等活動(dòng),歸納出積的`變化規(guī)律。并會(huì)用數(shù)學(xué)語言刻畫這個(gè)規(guī)律,感悟函數(shù)的思想方法。同時(shí),讓學(xué)生通過觀察、比較、分析、概括、等思維活動(dòng)體驗(yàn)歸納規(guī)律的方法,從面獲得一定的價(jià)值體驗(yàn)。
成功之處:
1.引導(dǎo)學(xué)生經(jīng)歷規(guī)律發(fā)現(xiàn)的過程,讓過程在孩子的經(jīng)歷中變得清晰。教學(xué)中要讓學(xué)生充分經(jīng)歷規(guī)律的發(fā)現(xiàn)過程,把發(fā)現(xiàn)的過程細(xì)化、廣泛化,讓每個(gè)學(xué)生都參與。在起初的觀察里思維靈活的學(xué)生嘗試說出“兩個(gè)數(shù)相乘,一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘幾,積也乘幾”,接著引導(dǎo)學(xué)生理解“也”的含義,強(qiáng)化“一個(gè)因數(shù)不變,另一個(gè)因數(shù)和積的變化是相同的”。在這里學(xué)生的已有水平已經(jīng)達(dá)到了初步認(rèn)識“積的變化規(guī)律”,接下來讓學(xué)生舉例,深化規(guī)律。這個(gè)過程,讓學(xué)生感悟到規(guī)律的得出要經(jīng)過探索、猜想、驗(yàn)證,歸納。培養(yǎng)了學(xué)生各方面能力。
2.體驗(yàn)成功,讓每個(gè)孩子都有所收獲。每個(gè)孩子都期待成功,每個(gè)孩子都能成功,數(shù)學(xué)要讓不同的人得到不同的發(fā)展。在教學(xué)中讓每個(gè)孩子都參與在舉例子的過程中,舉不同的例子來驗(yàn)證規(guī)律,運(yùn)用規(guī)律,這個(gè)過程就是學(xué)生消化知識、運(yùn)用知識的過程,孩子在數(shù)學(xué)活動(dòng)中得到了成功的喜悅。
3.體會(huì)快樂的同時(shí)感受數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)和其他學(xué)科不同,它是一門邏輯性非常強(qiáng)非常講究嚴(yán)謹(jǐn)性的學(xué)科,因此在教學(xué)中要注意特點(diǎn),突出教學(xué)的嚴(yán)謹(jǐn)性。這節(jié)感受數(shù)學(xué)嚴(yán)謹(jǐn)性就是滲透在各個(gè)環(huán)節(jié)。比如發(fā)現(xiàn)了“兩個(gè)數(shù)相乘,因數(shù)乘幾,積也乘幾”再讓學(xué)生說說理解;老師也展示自己的想法與學(xué)生的想法產(chǎn)生沖突;這些都是數(shù)學(xué)嚴(yán)謹(jǐn)性的體現(xiàn)。
不足之處:
教學(xué)第一個(gè)規(guī)律時(shí),呈現(xiàn)的材料太少,讓學(xué)生一下子由初步的感悟總結(jié)提煉規(guī)律,不符合學(xué)生的認(rèn)知規(guī)律。應(yīng)該在初步感悟的基礎(chǔ)上讓學(xué)生嘗試舉例,再去總結(jié)提煉,這樣既加深學(xué)生的理解,也符合認(rèn)知規(guī)律。
積的變化規(guī)律教學(xué)反思9
本節(jié)課的課題是積的變化規(guī)律,是在學(xué)習(xí)了三位數(shù)乘兩位數(shù)的的基礎(chǔ)上探索積的變化規(guī)律。
在講新知識之前,讓學(xué)生先明確關(guān)系:因數(shù)X?因數(shù)=積。引導(dǎo)學(xué)生思考:若改變其中的`一個(gè)因數(shù)不變,改變另一個(gè)因數(shù),積灰發(fā)生怎樣的變化?教師作出正確的指引,可以節(jié)約課堂時(shí)間。隨后給出兩組算式(教材例題),讓學(xué)生通過自主思考,自主探索,發(fā)現(xiàn)和歸納出積的積的變化規(guī)律,再讓學(xué)生分別用三位數(shù)乘兩位數(shù)的方法和運(yùn)用規(guī)律求得數(shù)的方法,對積的變化規(guī)律進(jìn)行驗(yàn)證,讓學(xué)生認(rèn)識到數(shù)學(xué)的嚴(yán)謹(jǐn)性,最后進(jìn)行針對性習(xí)題鞏固。
在練習(xí)設(shè)計(jì)上,難度層次分明。先是運(yùn)用規(guī)律計(jì)算有規(guī)律算式,進(jìn)而運(yùn)用規(guī)律解決實(shí)際問題。但是在本節(jié)課的教學(xué)實(shí)踐上發(fā)現(xiàn)還有一些環(huán)節(jié)有待進(jìn)一步完善:
1.??在引入方面,學(xué)生更能接受把舊知識向新知識過度的方式的學(xué)法
2.在驗(yàn)證環(huán)節(jié)上,要根據(jù)學(xué)生的實(shí)際情況設(shè)計(jì)題目難度,本課上驗(yàn)證環(huán)節(jié)應(yīng)降低難度,計(jì)算太難會(huì)導(dǎo)致重點(diǎn)發(fā)生偏離,無法突破。
3.在進(jìn)行一些探索活動(dòng)的設(shè)計(jì)時(shí)還應(yīng)更大膽放手,讓學(xué)生成為學(xué)習(xí)的主人,使課堂成為學(xué)生展示個(gè)性的舞臺。?
積的變化規(guī)律教學(xué)反思10
《積的變化規(guī)律》是義務(wù)教育課程人教版小學(xué)四年級第三單元的內(nèi)容。
本節(jié)課通過三個(gè)層次的學(xué)習(xí)使學(xué)生不但發(fā)現(xiàn)了積的變化規(guī)律,而且學(xué)會(huì)了研究問題的一般方法:研究具體問題——?dú)w納發(fā)現(xiàn)的規(guī)律(或模型)——解釋說明規(guī)律——舉例驗(yàn)證規(guī)律。創(chuàng)設(shè)讓每個(gè)學(xué)生自主探索的`問題情境。例題創(chuàng)設(shè)的情境并非來源于生活,而是來源于數(shù)學(xué)本身。因此應(yīng)從數(shù)學(xué)的角度提出引發(fā)學(xué)生積極思考的問題,盡可能讓每個(gè)學(xué)生都投入到問題的探索當(dāng)中。以小組為單位,交流自己寫的算式,并說一說是怎樣想的,讓學(xué)生嘗試用自己的語言說明寫算式的理由,也就是解釋自己發(fā)現(xiàn)的規(guī)律,讓學(xué)生充分經(jīng)歷學(xué)習(xí)的過程,學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口,相互交流進(jìn)一步培養(yǎng)學(xué)生自主探究能力及合作交流意識。通過讓學(xué)生進(jìn)行不同類型的練習(xí),可以有效激發(fā)學(xué)生的學(xué)習(xí)興趣,拓展學(xué)生的思維空間,使不同的學(xué)生得到不同的發(fā)展。
本節(jié)課我始終圍繞學(xué)生轉(zhuǎn),挖掘?qū)W生已有的數(shù)學(xué)知識,使學(xué)生充分經(jīng)歷了知識的產(chǎn)生,形成過程,能根據(jù)教學(xué)反饋信息及時(shí)調(diào)整教學(xué)活動(dòng),順利完成了教學(xué)任務(wù)。
本節(jié)課的不足之處:語言組織不嚴(yán)密,有些地方和個(gè)別學(xué)生的理解有分歧。課堂氣氛不夠活躍,應(yīng)該積極引導(dǎo)學(xué)生參與課堂學(xué)習(xí)并應(yīng)該根據(jù)學(xué)生不同課堂表現(xiàn)給予恰當(dāng)?shù)挠嗅槍π缘募?lì)評價(jià)。
積的變化規(guī)律教學(xué)反思11
積的變化規(guī)律是在學(xué)生已經(jīng)掌握了三位數(shù)乘兩位數(shù)的口算和筆算方法的基礎(chǔ)上進(jìn)行教學(xué)的,信息窗呈現(xiàn)了篩沙車清理海水浴場的情景。通過介紹篩沙車每分鐘清潔沙灘的面積數(shù)量,引導(dǎo)學(xué)生提出問題,引入對積的變化規(guī)律的探索。課堂教學(xué)的重點(diǎn)是讓學(xué)生自己探索出積的變化規(guī)律,并靈活運(yùn)用這個(gè)規(guī)律解決問題。
在探究積的變化規(guī)律時(shí),我注重學(xué)生的觀察、分析、比較,讓學(xué)生在充分經(jīng)歷中感悟,在充分感悟中提煉。新課標(biāo)注重學(xué)生的“過程與方法”的探究,提倡學(xué)生充分地經(jīng)歷問題的產(chǎn)生、發(fā)現(xiàn)、探索的過程。整個(gè)過程,學(xué)生主動(dòng)參與,借助統(tǒng)計(jì)表和乘法算式探究積的`變化規(guī)律,在大量的舉例、充分地觀察中去感悟積的變化與不變的規(guī)律,初步構(gòu)建自己的認(rèn)知體系,充分經(jīng)歷了知識的發(fā)生過程。較好的培養(yǎng)了學(xué)生的觀察能力、分析能力和概括能力,培養(yǎng)學(xué)生的探究意識。
為了讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,提高學(xué)習(xí)數(shù)學(xué)的興趣。在課堂練習(xí)中,我再次出示本課信息窗情境圖。讓學(xué)生繼續(xù)探究:5輛篩沙車每分鐘清潔沙灘多少平方米?15輛呢?30輛呢?“這個(gè)練習(xí)回歸生活實(shí)踐,讓學(xué)生感受到積的變化規(guī)律存在于生活的各個(gè)角落。引導(dǎo)學(xué)生聯(lián)系生活實(shí)際,學(xué)以致用。
不足之處:
教學(xué)過程中我發(fā)現(xiàn),學(xué)生在描述積的變化規(guī)律時(shí),語言總是不夠準(zhǔn)確、表述總是不夠完整。于是,我發(fā)揮了教師的主導(dǎo)作用,引導(dǎo)學(xué)生逐步完整、準(zhǔn)確地描述出積變化的規(guī)律。今后我們應(yīng)該注重學(xué)生概括能力的培養(yǎng)。
積的變化規(guī)律教學(xué)反思12
這堂課我以兩組乘法算式為載體,通過前置學(xué)習(xí),引導(dǎo)學(xué)生探索當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化規(guī)律情況,從中歸納出積的變化規(guī)律。在整個(gè)學(xué)習(xí)過程中,我努力做到給學(xué)生留出充足的探索空間,讓學(xué)生自主地進(jìn)行探索與交流,從而掌握規(guī)律,應(yīng)用規(guī)律。探究過程中,我出示了兩組算式:
6×2= 12 80× 4= 320 6×20= 120 40× 4= 160 6×200= 1200 20× 4= 80 我鼓勵(lì)學(xué)生仔細(xì)觀察,動(dòng)腦思考,發(fā)現(xiàn)規(guī)律,讓他們把發(fā)現(xiàn)的規(guī)律說給同伴聽,然后全班交流,在交流中鼓勵(lì)學(xué)生用一句話概括出規(guī)律。讓學(xué)生自己經(jīng)歷研究問題的一般方法:研究具體問題——?dú)w納發(fā)現(xiàn)規(guī)律——解釋說明規(guī)律——舉例驗(yàn)證規(guī)律。通過這個(gè)過程的探索,不但讓學(xué)生理解兩數(shù)相乘時(shí),積的變化隨著其中一個(gè)因數(shù)或兩個(gè)因數(shù)的變化而變化,同時(shí)體會(huì)事物間是密切相關(guān)的,受到辯證思想的啟蒙教育。
想歸想,設(shè)計(jì)歸設(shè)計(jì),但教完這一堂課,留給自己更多的是無盡的思索不滿意。在課堂中,為什么學(xué)生的興趣調(diào)動(dòng)不起來呢呢?自己在活動(dòng)中真正做到組織者、引導(dǎo)者與合作者的作用了嗎?學(xué)生的自主性充分發(fā)揮了嗎?學(xué)生在經(jīng)歷積的變化規(guī)律的發(fā)現(xiàn)過程中真切地感受到規(guī)律了嗎?學(xué)生的分析能力是否得到了進(jìn)一步的提高?一連串的問號在我的腦海中閃過。我靜坐下來,對自己這節(jié)課進(jìn)行了細(xì)細(xì)的回顧與反思。
1、要求不是十分明確。在要求學(xué)生觀察第一組式子,看看你有什么發(fā)現(xiàn)時(shí),由于要求不明確,引導(dǎo)不到位,很多同學(xué)都只是關(guān)注口算的計(jì)算方法,而不是關(guān)注因數(shù)和積是如何變化的,這里浪費(fèi)了很多時(shí)間。
2、鼓勵(lì)性語言不到位。這節(jié)課的特點(diǎn)主要在一個(gè)愉悅的學(xué)習(xí)環(huán)境中進(jìn)行思考、探索、討論、發(fā)言,但是有些學(xué)生還是不敢舉手大膽的交流。這部分學(xué)生主要是害怕自己說錯(cuò)了,讓別的同學(xué)取笑。好的數(shù)學(xué)老師應(yīng)該善于營造一種成功、快樂的對話情境。教師和學(xué)生不僅僅通過語言進(jìn)行討論或交流,而更主要的'是進(jìn)行平等的心靈溝通。針對學(xué)生不敢舉手發(fā)言,在以后的課堂教學(xué)中要注意多給學(xué)生鼓勵(lì),多給學(xué)生信心,以使學(xué)生暢所欲言。
3、在本課教學(xué)中,由于本課例題比較簡單,大部分學(xué)生通過口算就能直接算出答案,無需通過積的變化規(guī)律進(jìn)行計(jì)算,這就給部分思維發(fā)散性較差的學(xué)生形成了一個(gè)假象,以至無法真正懂得該規(guī)律的應(yīng)用。這一點(diǎn)在學(xué)生舉例驗(yàn)證時(shí)表現(xiàn)最為明顯。而慚愧的是老師我并沒能好好引導(dǎo)。
看來,在課堂上,學(xué)生真正主動(dòng)探索知識的目標(biāo)并不太容易實(shí)現(xiàn)。希望自己在以后的教學(xué)中,在同行的幫助下,不斷探索,不斷改進(jìn),不斷創(chuàng)新,不斷長進(jìn)。
積的變化規(guī)律教學(xué)反思13
《積變化的規(guī)律》這部分是在學(xué)生已經(jīng)掌握了乘法運(yùn)算的基本技能的基礎(chǔ)上進(jìn)行教學(xué)的。探索規(guī)律是一個(gè)發(fā)現(xiàn)關(guān)系、發(fā)展思維的過程,有利于學(xué)生夯實(shí)基礎(chǔ),鼓勵(lì)創(chuàng)新,更能夠體現(xiàn)數(shù)學(xué)思考,凸顯過程與方法,同時(shí),也能夠讓學(xué)生在自主探索與思考中感受到學(xué)習(xí)的快樂,形成積極的學(xué)習(xí)情感與態(tài)度。教學(xué)中,我首先從調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生的興趣入手,給教材例題中的算式創(chuàng)設(shè)了具體的情境,之后再根據(jù)學(xué)生回答,提出問題,讓學(xué)生去思考,去觀察,去尋找。其次我結(jié)合學(xué)生的認(rèn)知規(guī)律,設(shè)置了發(fā)現(xiàn)-驗(yàn)證-小結(jié)-應(yīng)用這樣一些學(xué)習(xí)探究過程,并通過學(xué)生獨(dú)立觀察、分組驗(yàn)證、集體小結(jié)等活動(dòng),讓學(xué)生親身經(jīng)歷自主探究規(guī)律的全過程,較好的發(fā)揮了學(xué)生學(xué)習(xí)的.主體地位,強(qiáng)化了學(xué)生對積的變化規(guī)律的理解和掌握。同時(shí)我還設(shè)計(jì)了應(yīng)用規(guī)律解決問題和對規(guī)律應(yīng)用的適度拓展,使得不同層面的的學(xué)生都得到了發(fā)展,學(xué)生在整個(gè)學(xué)習(xí)過程中不但收獲了知識,提高了能力,而且還在不斷享受著探究的樂趣和成功的喜悅。
積的變化規(guī)律教學(xué)反思14
探索規(guī)律是一個(gè)發(fā)現(xiàn)關(guān)系、發(fā)展思維的過程,有利于學(xué)生夯實(shí)基礎(chǔ),鼓勵(lì)創(chuàng)新,更能夠體現(xiàn)數(shù)學(xué)思考,凸顯過程與方法,同時(shí),也能夠讓學(xué)生在自主探索與思考中感受到學(xué)習(xí)的快樂,形成積極的學(xué)習(xí)情感與態(tài)度。教學(xué)中,我首先從調(diào)動(dòng)學(xué)生的`積極性,激發(fā)學(xué)生的興趣入手,給教材例題中的算式創(chuàng)設(shè)了具體的情境,之后再根據(jù)學(xué)生回答,提出問題,讓學(xué)生去思考,去觀察,去尋找。其次我結(jié)合學(xué)生的認(rèn)知規(guī)律,設(shè)置了發(fā)現(xiàn)-驗(yàn)證-小結(jié)-應(yīng)用這樣一些學(xué)習(xí)探究過程,并通過學(xué)生獨(dú)立觀察、分組驗(yàn)證、集體小結(jié)等活動(dòng),讓學(xué)生親身經(jīng)歷自主探究規(guī)律的全過程,較好的發(fā)揮了學(xué)生學(xué)習(xí)的主體地位,強(qiáng)化了學(xué)生對積的變化規(guī)律的理解和掌握。同時(shí)我還設(shè)計(jì)了應(yīng)用規(guī)律解決問題和對規(guī)律應(yīng)用的適度拓展,使得不同層面的的學(xué)生都得到了發(fā)展學(xué)生在整個(gè)學(xué)習(xí)過程中不但收貨了知識提高了能力而且還在享受著探究的樂趣和成功的喜悅。
積的變化規(guī)律教學(xué)反思15
今天教學(xué)了積的變化規(guī)律,昨天布置了預(yù)習(xí)作業(yè):
計(jì)算、再觀察比較下列算式:30*24=720 (30*2)*24= (30*4)*24= 30*(24*5)= 后面三個(gè)算式等號左邊與第一個(gè)算式左邊比,什么發(fā)生了什么變化,算出后三題的積再與第一題的積比一比,你有什么發(fā)現(xiàn)? 30*24=720 (30÷2)*24= (30÷5)*24= 30*(24÷6)= 后面三個(gè)算式等號左邊與第一個(gè)算式左邊比,什么發(fā)生了什么變化,算出后三題的積再與第一題的積比一比,你有什么發(fā)現(xiàn)?學(xué)生在課始交流計(jì)算結(jié)果與自己的人發(fā)現(xiàn)時(shí),習(xí)慣于表述成:一個(gè)因數(shù)不變,另一個(gè)因數(shù)擴(kuò)大幾倍,積也擴(kuò)大相同的倍數(shù);一個(gè)因數(shù)不變,另一個(gè)因數(shù)縮小幾倍,積也縮小相同的倍數(shù)。
為了驗(yàn)證大家的發(fā)現(xiàn),我們首先讓大家用書中的例題驗(yàn)證,再讓大家各舉一個(gè)例子驗(yàn)證得出積得變化規(guī)律。但遺憾的是在后面的練習(xí)中學(xué)生還是習(xí)慣于直接計(jì)算積卻不用所學(xué)的積得變化規(guī)律去求積,在我的追問下好的學(xué)生想到根據(jù)記得變化規(guī)律直接用原來的積乘幾求到現(xiàn)在的積。
我也反思我的'教學(xué)中是否有導(dǎo)致學(xué)與用剝離的現(xiàn)象,可能在開始的教學(xué)中教師只注重學(xué)生得出規(guī)律的結(jié)果反而削弱了學(xué)生對規(guī)律本身的理解與實(shí)際應(yīng)用,于是在課即將結(jié)束前我出示了題目:根據(jù)275*46=12650 直接寫出275*92= 的結(jié)果并說明解題思路,到此學(xué)生才全部理解了記得變化規(guī)律的有用性。雖然是后知后覺但畢竟是真正有了“知覺”了。
【積的變化規(guī)律教學(xué)反思】相關(guān)文章:
積的變化規(guī)律教學(xué)反思(15篇)10-19
《積的變化規(guī)律》教學(xué)反思(15篇)05-28
《積的變化規(guī)律》教學(xué)反思15篇06-17
積的變化規(guī)律教學(xué)反思匯編15篇08-27
《積的變化規(guī)律》說課稿12-19
商的變化規(guī)律教學(xué)反思07-02
《商的變化規(guī)律》教學(xué)反思15篇06-27
積的乘方教學(xué)反思12-13
積的乘方教學(xué)反思8篇08-14