思思热免费在线视频观看|欧美国产精品一级|精品亚洲一区二区|真实国产乱子伦对白视频

<b id="w545d"><legend id="w545d"></legend></b>
<blockquote id="w545d"></blockquote>
    1. <thead id="w545d"></thead>
        首頁 申請書推薦信邀請函通知工作總結(jié)工作計劃策劃書工作報告合同演講稿職業(yè)規(guī)劃
        當(dāng)前位置:98158范文網(wǎng)>教育范文>教學(xué)反思>圓柱體積的教學(xué)反思

        圓柱體積的教學(xué)反思

        時間:2024-06-23 16:23:18 教學(xué)反思 我要投稿

        圓柱體積的教學(xué)反思(精選)

          身為一名人民老師,我們要有很強(qiáng)的課堂教學(xué)能力,通過教學(xué)反思能很快的發(fā)現(xiàn)自己的講課缺點,怎樣寫教學(xué)反思才更能起到其作用呢?以下是小編整理的圓柱體積的教學(xué)反思,歡迎閱讀與收藏。

        圓柱體積的教學(xué)反思(精選)

        圓柱體積的教學(xué)反思1

          學(xué)案---回憶:長方體的體積怎樣計算?圓的面積計算公式是怎樣推導(dǎo)出來的呢?重點研究區(qū)域:圓柱體的體積怎樣計算?

          上課時,學(xué)案部分學(xué)生回答的很好,長方體的體積=長×寬×高,當(dāng)我指著長方體的底面時,學(xué)生就說,長方體的體積=底面積×高。學(xué)生對于圓的面積計算公式的的推導(dǎo)記憶猶新,這是很值得我高興的。面對本課的'重點解決問題,我滿懷信心(兩個復(fù)習(xí)問題的鋪墊,學(xué)生會首先想起來把圓柱體按照圓的面積推導(dǎo)過程一樣,來等分圓柱體),開始引導(dǎo)學(xué)生獨立思考,怎樣計算圓柱體的體積?正當(dāng)大家苦思冥想的時候,高邁把手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個舉手,把別人的“風(fēng)頭”都給搶去了,他是一個愛表現(xiàn)的學(xué)生,為了不影響其他學(xué)生思考,每次我總是“壓一壓”他的積極性!敖o大家留一點思考的時間,等一會再說你的方法”,誰知道這個“積極分子”不容我把話說完,(www.fwsir.com)已經(jīng)拿著自己的圓柱體跑到講臺上了,(哎,讓我怎么評價他呢,耐不住性子啊,再穩(wěn)重一些多好?),:我是這樣想的,這是一個圓柱體的生日蛋糕,我想把它橫著切成一個個圓片,分給你們吃。霎時間,下面的同學(xué)都笑了,過了一會,一個學(xué)生提問:切蛋糕,和圓柱體的體積有什么關(guān)系啊?“有啊,這個圓柱體蛋糕的體積就是每一個圓片的面積乘上圓片的'個數(shù)!边@樣解釋完,下面的學(xué)生有的在笑,有的在議論,還有的再思考。這個時候我用課件利用動畫讓學(xué)生又重溫了以上過程。

          整個課堂生動、活潑,學(xué)生思維活躍,在動、論、看等過程中學(xué)生輕松的掌握了圓柱體積公式。

        圓柱體積的教學(xué)反思2

          本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我來談?wù)勛约旱囊恍┓此肌?/p>

          1、導(dǎo)入時,力求突破教材,有所創(chuàng)新

          圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。

          2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)

          學(xué)生進(jìn)行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,因為學(xué)校沒有提供學(xué)具,所以我只能先讓學(xué)生展開空間想象,結(jié)合圓面積的推導(dǎo)過程,借助課件一一展示推導(dǎo)過程。讓學(xué)生觀察發(fā)現(xiàn)把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的`道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。

          3、練習(xí)時,形式多樣,層層遞進(jìn)

          例題的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。

         。1)、已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。

         。2)、已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。

          (3)、已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2) 2h。

         。4)、已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2) 2h。

         。5)、已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2) 2h。

          因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法。另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。不足之處

          本想給學(xué)生準(zhǔn)備學(xué)具,親自動手操作圓柱體體積的推導(dǎo)過程,無奈學(xué)校沒有學(xué)具,所以只能讓孩子借助圓面積的推導(dǎo)過程展開想象,然后借助課件展示圓柱體積的推導(dǎo)過程,可能對一些學(xué)困生的理解還有困難。

        圓柱體積的教學(xué)反思3

          本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>

          一、在教學(xué)過程的設(shè)計方面

          1、導(dǎo)入時,力求突破教材,有所創(chuàng)新

          圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、

          流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。

          2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)

          學(xué)生進(jìn)行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。

          3、練習(xí)時,形式多樣,層層遞進(jìn)

          例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型。

          a.已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。

          b.已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。

          c.已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2h。

          d.已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2h。

          e.已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)2h。

          因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。

          二、在教學(xué)策略方面

          我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。

          三、在教學(xué)技能方面

          學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的.知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的過程需要教師有認(rèn)真準(zhǔn)備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景。

          四、存在的問題

          不足之處是:由于這節(jié)課的設(shè)計是以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,所以在學(xué)生動手實踐、交流討論和思考的時間上教師應(yīng)合理把握,不能時間較多,否則會導(dǎo)致練習(xí)的時間較少。

          另外,在練習(xí)設(shè)計上,題形雖然全,但覺得題量偏多,因為這部分練習(xí)涉及的計算多、難,這樣練習(xí)題還需精心設(shè)計。

        圓柱體積的教學(xué)反思4

          這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進(jìn)行教學(xué)的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體積公式的推導(dǎo)過程,會計算圓柱的體積;在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識“ 從生活中來到生活中去” 的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。

          一、讓學(xué)生在現(xiàn)實情境中體驗和理解數(shù)學(xué)

          在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學(xué)生聽到教師提的問題多在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱(新問題)和長方體(已知)的知識聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機(jī)滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的`創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的欲望。

          二、鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流

          在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同學(xué)們有了圓面積計算公式推導(dǎo)的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動手操作,拼成了一個近似的長方體。通過實驗、操作、自主探究,實現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識。的思想。

          三、練習(xí)時,要形式多樣,層層遞進(jìn)

          例題“ 練一練” 中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型:

          1 .已知圓柱底面積(s )和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=sh

          2 .已知圓柱底面半徑(r )和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=πr?h 。

          3 .已知圓柱底面直徑(d )和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)?h 。

          4 .已知圓柱底面周長(c )和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)?h 。

          5 .已知圓柱側(cè)面積(s 側(cè))和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=π(s 側(cè)÷h÷π÷2)?h 。

          在鞏固練習(xí)中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學(xué)生才能真正掌握好計算圓柱體積的方法。

        圓柱體積的教學(xué)反思5

          教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時讓學(xué)生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體

          積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。

          我讓學(xué)生觀察,先猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學(xué)生對形體的認(rèn)識。然后讓學(xué)生動手實驗:有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計算的方法。讓孩子親歷教學(xué)的.驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學(xué)生想一想等積等高的時候,圓柱和圓錐有什么樣的關(guān)系?等積等底的時候,圓柱和圓錐又會有什么樣的關(guān)系?這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實際的生活問題,起到鞏固深化知識點的作用。

          圓錐的體積這節(jié)課的教學(xué)具有下面的特點,一是在教學(xué)新課時,沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實驗,而是通過師生交流、問答、猜想等形式,調(diào)動學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;二是在實驗時,讓學(xué)生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗

          在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實驗的學(xué)生不多,如果每個小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個學(xué)生都能真切的參與到探究中去,這樣每個學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會了知識,更重要的是培養(yǎng)了學(xué)生的能力。

          教材中圓錐體積的相對練習(xí)較少,但在考試?yán)锩鎸嶋H解決問題中卻常常需要學(xué)生能夠靈活應(yīng)用,所以特別增加了一課時練習(xí)。教學(xué)中的一組填空題,對于幫助學(xué)生深入理解等底等高圓柱與圓錐的聯(lián)系很有價值。通過練習(xí),學(xué)生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或三分之四個圓柱的體積),而它們的體積相差2個圓錐的體積(或三分之二個圓柱的體積)??。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計算簡便。

          教學(xué)的最后我與孩子們一起通過大量的練習(xí),引導(dǎo)總結(jié)出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。

          總而言之,圓柱圓錐的體積計算是教學(xué)的重點和難點,也是考試中學(xué)生容易丟分的危險高發(fā)內(nèi)容,我在后面的教學(xué)中需要精講和精煉,讓學(xué)生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學(xué)直覺方為最高層次!

        圓柱體積的教學(xué)反思6

          今天教學(xué)“圓柱體的體積”。接受昨天學(xué)生提出的“只學(xué)不會的”學(xué)習(xí)方式,在黑板上分了兩個區(qū)域,一個復(fù)習(xí)區(qū)域:長方體的體積怎樣計算?圓的面積計算公式是怎樣推導(dǎo)出來的呢?重點研究區(qū)域:圓柱體的體積怎樣計算?

          面對復(fù)習(xí)的問題,學(xué)生回答的很好,長方體的體積=長×寬×高,當(dāng)我指著長方體的底面時,學(xué)生就說,長方體的體積=底面積×高。學(xué)生對于圓的面積計算公式的的推導(dǎo)記憶猶新,這是很值得我高興的。面對本課的重點解決問題,我滿懷信心(兩個復(fù)習(xí)問題的鋪墊,學(xué)生會首先想起來把圓柱體按照圓的面積推導(dǎo)過程一樣,來等分圓柱體),開始引導(dǎo)學(xué)生獨立思考,怎樣計算圓柱體的體積?正當(dāng)大家苦思冥想的時候,高邁把手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個舉手,把別人的“風(fēng)頭”都給搶去了,他是一個愛表現(xiàn)的學(xué)生,為了不影響其他學(xué)生思考,每次我總是“壓一壓”他的積極性!敖o大家留一點思考的時間,等一會再說你的方法”,誰知道這個“積極分子”不容我把話說完,已經(jīng)拿著自己的圓柱體跑到講臺上了,(哎,讓我怎么評價他呢,耐不住性子啊,再穩(wěn)重一些多好?),:我是這樣想的,這是一個圓柱體的生日蛋糕,我想把它橫著切成一個個圓片( ),分給你們吃。霎時間,下面的同學(xué)都笑了,過了一會,一個學(xué)生提問:切蛋糕,和圓柱體的體積有什么關(guān)系?“有啊,這個圓柱體蛋糕的體積就是每一個圓片的面積乘上圓片的個數(shù)!边@樣解釋完,下面的`學(xué)生有的在笑,有的在議論,還有的再思考。我想想了,這是我該出手的時候了:“高邁, 給大家解釋一下,圓片是什么?圓片的個數(shù)又是什么?”“圓片就是圓柱的底面積,圓片的個數(shù)就是圓柱的高”。話音剛落,掌聲響了起來……。

          這種推導(dǎo)圓柱體體積的計算方法,是出乎我意料之外的,因為,解決問題前,已經(jīng)復(fù)習(xí)了長方體體積計算方法與圓的面積的推導(dǎo)方法,都是為“把圓柱體進(jìn)行等分轉(zhuǎn)化成長方體體積來推導(dǎo)”做鋪墊的。誰曾向,這種用“堆”的過程來說明“底面積×高”計算圓柱體體積的道理,實際是“積分”思想,這是要到中學(xué)才學(xué)習(xí)的,學(xué)生不好理解的,竟然跑到“預(yù)想方法”之前了。真是“計劃不如變化快啊”。課堂上的“精彩總是不期而至”啊。試想,如果,剛開始他舉手,我就像以往一樣“壓一壓他,讓他和其他學(xué)生同步思考,說不定,這個想法在他腦海里轉(zhuǎn)瞬即逝,那么這個精彩的火花就不會在課堂上呈現(xiàn)。由此感悟到,課堂上,要給學(xué)生即興發(fā)言的機(jī)會,及時的捕捉學(xué)生的思維靈感,精彩就會不期而至。

        圓柱體積的教學(xué)反思7

          今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細(xì)細(xì)品味上課的過程,頗有幾分感受:

          在本課中,當(dāng)學(xué)生面對新的問題情境—“圓柱的體積該怎么求?”時,能從圓的面積公式的推導(dǎo),根據(jù)已有的知識作出 “轉(zhuǎn)化”的判斷。當(dāng)然,由于知識經(jīng)驗的不足,表達(dá)得不是很清晰。但學(xué)生的`這些都是有價值的。這些“猜想”閃爍著學(xué)生智慧的火花,折射出學(xué)生的創(chuàng)造精神。在此基礎(chǔ)上,讓學(xué)生以小組合作方式,利用已切開的圓柱體教具進(jìn)行驗證,在討論聲中,學(xué)生獲得了真知。可見,教師要保護(hù)學(xué)生的創(chuàng)造熱情并給以科學(xué)探究方法的引導(dǎo),以發(fā)展學(xué)生的創(chuàng)造性。在這點上,我對學(xué)生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學(xué)生的創(chuàng)造力是我們設(shè)計教法的前提。

          在引導(dǎo)學(xué)生解決“粉筆的體積”等這個問題時,課堂上有學(xué)生把它當(dāng)作圓柱體積來求,提出:“誤差這么小,是可行的。”而且那位學(xué)生要求的僅是一個大約的數(shù)值,所以用這種方法可以。但這種計算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會給學(xué)生造成“圓臺的體積可以用這兩種方法來計算”的錯誤認(rèn)識,對學(xué)生的后續(xù)學(xué)習(xí)會造成一些不利的影響。我就這個問題引導(dǎo)學(xué)生進(jìn)一步探索,使學(xué)生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時會行不通,懂得知識并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進(jìn)一步學(xué)習(xí)積累經(jīng)驗。學(xué)生在探索過程中,雖不能很快獲得結(jié)論性的知識,但卻嘗試了科學(xué)探究的方法,形成良好的思維品質(zhì),增進(jìn)了情感體驗。這樣,既保護(hù)了學(xué)生的創(chuàng)造性,又保證了教學(xué)內(nèi)容的科學(xué)性,就學(xué)生的發(fā)展而言,誰能說讓學(xué)生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結(jié)論更富有積極的意義?

        圓柱體積的教學(xué)反思8

          本節(jié)課主要是引導(dǎo)學(xué)生探索并掌握圓柱的體積公式,主要重視了以下幾方面:

          1、重視先猜想、再驗證的思路來引入教學(xué)。

          新課伊始,課件出示三個幾何體的底面和高,引導(dǎo)學(xué)生來觀察這三個幾何體,發(fā)現(xiàn)它們的底面積都相等,高也都相等。進(jìn)一步引導(dǎo)思考:想一想,長方體和正方體的體積相等嗎?為什么?猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?學(xué)生認(rèn)同,并提出等于底面積乘高。教師再次拋出問題:這僅僅是猜想,那用什么辦法驗證呢?今天這節(jié)課就來研究這個問題。

          2、重視利用知識、方法的遷移來展開教學(xué)。

          本課的例題探索,有一個目標(biāo)就是使學(xué)生在活動中進(jìn)一步體會“轉(zhuǎn)化”方法的價值,培養(yǎng)應(yīng)用已有知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。因此,筆者在執(zhí)教時,根據(jù)陳星月的回答順勢復(fù)習(xí)了圓面積的推導(dǎo):把一個圓平均分成16份、32份、64份或更多,剪開后可以拼成近似的長方形,圓的面積就可以轉(zhuǎn)化成長方形的面積進(jìn)行計算。接著提問:那么,受這個啟發(fā),那我們能不能將圓柱轉(zhuǎn)化成長方體來計算體積呢?首先實物演示圓柱切拼的過程。把圓柱的底面平均分成16份,切開后可以拼成一個近似的長方體。然后進(jìn)行課件演示,發(fā)現(xiàn):把圓柱的底面平均分的份數(shù)越多,拼成的幾何體會越來越接近長方體。這樣有利于激活學(xué)生已有的知識和經(jīng)驗,使學(xué)生充分體會圓柱體積公式推導(dǎo)過程的合理性,并不斷豐富對圖形轉(zhuǎn)化方法的感受。

          3、重視通過核心問題的討論和板書的精當(dāng)設(shè)計來突出重點、突破難點。

          核心問題即指中心問題,是諸多問題中相對最具思維價值、最利于學(xué)生思考及最能揭示事物本質(zhì)的問題。它是在教學(xué)過程中,為學(xué)生更好地理解和掌握新知、更好地積累學(xué)習(xí)經(jīng)驗和方法,針對具體教學(xué)內(nèi)容,提煉而成的教學(xué)中心問題。就如圓柱體積的`計算而言,在這節(jié)課的教學(xué)過程中,教師抓住“圓柱的體積可能跟圓柱的哪些條件有關(guān)呢?”“拼成的長方體與原來的圓柱有什么關(guān)系?”“要計算圓柱的體積一般要知道哪些條件?”這三個問題,使學(xué)生在獲取圓柱體積公式的同時又了解了體積公式的由來,并及時總結(jié)了思考問題的方法。核心問題也可以指為了探究知識的來龍去脈而在關(guān)鍵環(huán)節(jié)提出的指向性問題。

          當(dāng)然,需要注意和改進(jìn)的地方是:書寫格式的規(guī)范。

        圓柱體積的教學(xué)反思9

          本節(jié)課我注重知識的形成過程,使學(xué)生能主動學(xué)習(xí)新知,突破難點、疑點,能解決實際問題。

          1、在教學(xué)過程中,讓學(xué)生自主合作、探究,經(jīng)歷猜想、操作、驗證、討論、歸納等數(shù)學(xué)活動。比如,我從圓柱模型拼成長方體入手,強(qiáng)調(diào)它們是等底等高長方體。由長方體體積公式V=Sh,猜想圓柱的體積公式。再通過學(xué)生的具體實際操作、小組合作探究,從而探索出圓柱體積公式,并掌握圓柱體積的計算方法,能解決與圓柱體積計算相關(guān)的一些簡單的實際問題。

          2、在活動中進(jìn)一步使學(xué)生體會“轉(zhuǎn)化”方法的價值,比如,回顧上學(xué)期所學(xué)的圓的面積推導(dǎo)公式,從而理解圓柱的底面積與長方體底面積相等。這樣有利于培養(yǎng)學(xué)生應(yīng)用已有知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。

          3、本節(jié)課中,我最大的'遺憾就是沒有采用多媒體課件。但我認(rèn)為一節(jié)好課就非要使用多媒體課件嗎?其實不然。當(dāng)然,今天我在教學(xué)中,確實有許多的不足。比如,將圓柱體切割成若干等份,等份越多,分得越細(xì),就越接近于長方體。倘若使用了多媒體課件演示,或許效果更明顯。

          總之,今天教學(xué)中的不足,我會不斷改進(jìn)。既面向全體學(xué)生,又注重不同學(xué)生的不同發(fā)展,設(shè)計更精、更符合學(xué)生發(fā)展的梯度問題,讓他們在有限的時空內(nèi)愉快學(xué)習(xí)、成長!

        圓柱體積的教學(xué)反思10

          [頭疼問題]

          近期六年級的任課教師都會頭疼我們也不例外

          年級組集體備課時會嘆氣

          在走廊里碰頭時會感慨

          嘆氣、感慨地主要原因就是:近期作業(yè)的錯誤率很高(特別是學(xué)困生)

          這使我不免停下“匆匆的步伐”凝望著這些作業(yè)叉叉多的孩子

          什么地方出問題了?

          [細(xì)細(xì)掂量]

          一輪本子改下來錯誤有以下幾類

          1、優(yōu)等生:列出一個長長的算式,直接得出錯誤的結(jié)果(看不出是哪一步出錯,反正計算錯)

          2、中等生:求表面積時,大概知道側(cè)面積+兩個底面積;但真正列式的時候底面積沒乘2;而到了只需要加一個底面積的'時候(無蓋水桶等實際問題的時候)卻乘2;

          3、學(xué)困生:列出的算式都有問題。一查,圓面積計算公式都不會(夠厲害),最基本的都不會,圓柱的表面積和體積又如何能正確求出;個別的20多分鐘頭都不抬,就在計算一個圖形題,仔細(xì)一看列式出錯,后面的脫式計算過程中的結(jié)果有的有6、7位小數(shù);依然不知疲倦的算啊算,看著都累

          4、不知靈活變通,一般來講3.14最好是最后再乘,這樣可以降低計算的復(fù)雜程度,減輕計算的強(qiáng)度;但部分學(xué)困生勇氣可嘉,不管那一套,列式中3.14在前面就先算;放在后頭就最后算,老實得可愛;當(dāng)你在講計算技巧的時候可愛的孩子們還在埋頭苦算,結(jié)果錯誤百出。

          [標(biāo)本兼治]

          1、學(xué)優(yōu)生:提出要求:不能一步得出結(jié)果,要脫式:關(guān)注做作業(yè)、打草稿的態(tài)度、習(xí)慣,養(yǎng)成草稿本清晰、數(shù)字清楚,可以避免匆忙之中抄錯數(shù)字導(dǎo)致整題出錯。

          2、中等生、學(xué)困生:

         。1)重視公式的熟練程度:通過演示、推導(dǎo)、同桌互說、單獨抽問、上黑板默寫等方法幫助夯實基礎(chǔ)。

         。2)重點分析典型習(xí)題,幫助學(xué)生找到審題、列式、解題的方法和策略,并針對性練習(xí),提高技能

         。3)重點強(qiáng)記:3.14*1=…………………3.14*9= 常用計算結(jié)果,達(dá)到熟練程度,提高練習(xí)時的計算速度和正確率,也可以用于檢驗計算過程中的結(jié)果正確與否。

          (4)抓聽講習(xí)慣:要求要嚴(yán)格,教師針對問題進(jìn)行分析、講評的時候,應(yīng)要求所有學(xué)生抬頭關(guān)注,集中精力聽講(往往這樣的時候?qū)W困生是不睬你的,要適當(dāng)?shù)暮八饋碚緜1分多鐘,點一點他。),有了這個保證,講評的效果就有了,出錯的幾率就就會降低了。再結(jié)合以上措施,效果就會更好。

          [寫在結(jié)尾]

          有了措施,就需要有行動——老師的行動、學(xué)生的行動都要跟上,希望一段日子后會有好效果。

          也歡迎大家說說自己的好的做法,共同提高第二單元的質(zhì)量

        圓柱體積的教學(xué)反思11

          學(xué)生進(jìn)行圓柱體積公式探究時,由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個教具。為了讓學(xué)生充分體會,我把操作的機(jī)會給了個別學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的`長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,從而推導(dǎo)出圓柱體積的計算公式。

          非常遺憾的是學(xué)生基本沒有親身參與操作,。但我使用了課件-----把圓柱體沿著它的直徑切成諾干等份,拼成一個近似的長方體 ,展示切拼過程.學(xué)生雖然沒有親身經(jīng)歷,但也一目了然.

        圓柱體積的教學(xué)反思12

          一、我在導(dǎo)入時,突破教材,有所創(chuàng)新 圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認(rèn)為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的'方向,這時教師的引導(dǎo)才是行之有效的。

          二、我教學(xué)新課時,實現(xiàn)人人參與,主動學(xué)習(xí) 學(xué)生進(jìn)行數(shù)學(xué)探究時,教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學(xué)階段立體圖形的教學(xué)難點,學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。

          三、我在 練習(xí)時,形式多樣,層層遞進(jìn) ,例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思。

        圓柱體積的教學(xué)反思13

          由于我課前認(rèn)真研讀教材,把握教學(xué)的重點和難點,精心設(shè)制教學(xué)過程和教學(xué)活動,上課時我做到胸有成竹。通過這節(jié)課的教學(xué)我感到自身的教學(xué)水平和駕馭課堂的能力得到了提升,從同事評課反映,我認(rèn)為這節(jié)課的教學(xué)是比較成功的。這節(jié)課教學(xué)方法主要體現(xiàn)在我采用新課程的教學(xué)理念,合理安排教學(xué)環(huán)節(jié),激發(fā)學(xué)生的思維,組織學(xué)生參與操作,通過觀察、交流,感悟知識間的聯(lián)系,從而獲取新知。我深知教學(xué)無止境,沒有最好只有更好,我要從成功中找不足。

          一、交流預(yù)習(xí)作業(yè)。

          在預(yù)習(xí)作業(yè)里我在備課時就設(shè)制了兩個知識點,讓學(xué)生課前完成,一個知識點是對舊知的回顧,要求學(xué)生寫出長方體和正方體的體積計算公式,另一個知識點是要求學(xué)生預(yù)習(xí)教材回答兩個問題,兩個問題是與這節(jié)課教學(xué)密切相關(guān)的內(nèi)容,在教材上都是能找到答案的。在對預(yù)習(xí)作業(yè)交流時我發(fā)現(xiàn)學(xué)生能比較順利和準(zhǔn)確的回答,這為新課的教學(xué)活動不僅起了良好的開端,更重要的是為學(xué)生在課堂上再進(jìn)一步地、更深入地探索新知削弱了阻力,減輕了負(fù)擔(dān)。

          二、交流猜想和探索如何驗證。

          我利用課件把等底等高的長方體、正方體和圓柱體圖形和問題呈現(xiàn)出來,讓學(xué)生觀察圖形思考問題并組織討論。在對如何驗證讓學(xué)生作為重點交流。意圖是先讓學(xué)生明確兩點。第一點圓可以轉(zhuǎn)化成長方形,圓柱可以轉(zhuǎn)化長方體;第二點把圓柱的底面經(jīng)過圓心16等份 ,切開后可以拼成一個近似的長方體。由于學(xué)生課前做了充分的預(yù)習(xí)和課堂開始階段預(yù)習(xí)作業(yè)的交流,學(xué)生對如何驗證的思維已經(jīng)初步形成。讓學(xué)生再次交流和匯報,我發(fā)現(xiàn)學(xué)生都了解和掌握。此時我指名學(xué)生到講臺前利用教具說出操作方法,并進(jìn)行操作,讓全班同學(xué)觀察操作過程。通過學(xué)生的操作、觀察,學(xué)生得到體驗和感悟,發(fā)現(xiàn)圓柱可以轉(zhuǎn)化成一個近似的長方體。

          三、課件展示、構(gòu)建新知。

          讓學(xué)生觀看課件:課件2是把剛才實際操作的過程再次演示和呈現(xiàn),課件3和課件4是把圓柱的底面平均分成32份、64份切開后拼成的`長方體。我抓住時機(jī)問學(xué)生:如果把圓柱的底面平均分的份數(shù)越多,切開后拼成的物體的形狀就有什么變化?學(xué)生明確回答拼成的物體越來越接近長方體。接著我把圓柱體和轉(zhuǎn)化后的長方體圖象同時顯示出來,要求學(xué)生說出長方體的底面積和高與圓柱的底面積和高有什么關(guān)系,學(xué)生能清楚地表達(dá)出來。為了拓展學(xué)生的知識面,我此時還提出了轉(zhuǎn)化后的長方體底面的長和寬分別與圓柱體的底面周長和半徑有什么關(guān)系,這在教材和參考教案都沒有的知識點。學(xué)生的思維得到激發(fā),學(xué)生勇于回答,學(xué)生回答錯了,我既沒有批評學(xué)生,也沒有急不可耐給出答案,而是讓學(xué)生再想,后來還是有學(xué)生能正確回答出來了。我想如果不給學(xué)生思考的時機(jī)直接給出答案,這樣與學(xué)生發(fā)現(xiàn)問題的答案所產(chǎn)生的效果就截然不同了。

          推導(dǎo)圓柱的體積計算公式的過程分為猜想、操作、發(fā)現(xiàn)、結(jié)論四個階段,學(xué)生經(jīng)歷這些教學(xué)活動,體驗和感悟了轉(zhuǎn)化的作用和價值,弄懂得了圓柱的體積計算公式的來龍去脈。

          四、分層練習(xí),發(fā)散思維。

          在獲得圓柱的體積計算公式的成果之后,為了培養(yǎng)學(xué)生解題的靈活性,拓展知識,培養(yǎng)學(xué)生發(fā)散思維的能力,注意分層練習(xí),我安排了三道練習(xí)題。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積。在練習(xí)時我不斷巡視關(guān)注學(xué)生練習(xí)情況,對出現(xiàn)的錯誤解答方法我不回避,在展示學(xué)生練習(xí)時既展示成功的也展示錯誤的。學(xué)生練習(xí)出現(xiàn)錯誤是正常現(xiàn)象,在討論和評講練習(xí)時是很好的資源,要充分的利用。

          不足之處:

          整個課堂教學(xué)過程中,師生的有效、良性互動還達(dá)不到預(yù)期目標(biāo),有一部分學(xué)生沒有具備良好作業(yè)習(xí)慣,靈活運用知識解決問題的能力還欠缺。

          通過這節(jié)課,我思量交流預(yù)習(xí)作業(yè)能不能與全課的教學(xué)活動整合在一起,在課堂上如何更好地關(guān)注中等偏下的學(xué)生,我時常為此感到糾結(jié)。建構(gòu)高效的課堂教學(xué)范式在我校已經(jīng)試驗一個月了,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學(xué)更高效、更優(yōu)質(zhì)。

        圓柱體積的教學(xué)反思14

          本節(jié)的教學(xué)重難點是:

          1、探索并掌握圓柱體積公式,能計算圓柱的體積。

          2、在探索圓柱體積的過程中,進(jìn)一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的`探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。

          教學(xué)方法:我利用課件演示和實物演示來解決。讓學(xué)生學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想。

          成功之處:

          1、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;

          2、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);

          3、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果。

          不足之處:

          1、個別學(xué)生還是對公式不會靈活應(yīng)用。

          2、練習(xí)題有些多,應(yīng)選擇一些有代表性的題,這樣小測驗就能有充足的時間了。

          3、關(guān)注學(xué)生的有些少,尤其是應(yīng)關(guān)注做錯的學(xué)生,應(yīng)知道為什么錯,及時在課堂評價出結(jié)果會更好。

          4、老師講得多,應(yīng)放手讓學(xué)生自己觀察自己處理自己總結(jié),會更好。

        圓柱體積的教學(xué)反思15

          一、讓學(xué)生在現(xiàn)實情境中體驗和理解數(shù)學(xué)

          《課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我從生活情境入手,先復(fù)習(xí)了長方體、正方體體積的計算,然后順勢提出“如何計算圓柱體的體積”這一全課的核心問題,從而引發(fā)學(xué)生的猜測、操作、交流等數(shù)學(xué)活動,使學(xué)生經(jīng)歷了“做數(shù)學(xué)”的過程。伴隨著問題的圓滿解決,學(xué)生體驗到了成功的喜悅與滿足。在體驗“生活數(shù)學(xué)”的過程中,學(xué)生理解與感受到了數(shù)學(xué)的魅力,獲得了個人生存與發(fā)展的必需的數(shù)學(xué)。

          二、鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流

          數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。教師要改變以例題、示范、講解為主的教學(xué)方式,引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動之中。在本節(jié)課中,我讓全班學(xué)生以小組為單位圍坐在一起,為他們提供自主探究的空間,同時盡量延長小組交流的時間,試圖把學(xué)習(xí)的時間、空間還給學(xué)生,讓其進(jìn)行自主探究、合作交流。數(shù)學(xué)的價值不在技能而在思想,在探究的過程中,我不是安排了一整套指令讓學(xué)生進(jìn)行程序操作,獲得一點基本技能,而是提供了相關(guān)知識背景、實驗素材,使用了“對我們有幫助嗎?”“你有什么發(fā)現(xiàn)?”“你是怎樣想的`?”等這樣一些指向探索的話語鼓勵學(xué)生獨立思考、動手操作、合作探究,讓學(xué)生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構(gòu)自己的數(shù)學(xué),而不是去模仿復(fù)制別人的數(shù)學(xué)。因為我想:自己的,才是有價值的。

          三、鼓勵解決問題策略的多樣化

          《課程標(biāo)準(zhǔn)》指出:鼓勵解決問題策略的多樣化,是因為施教,促進(jìn)每一個學(xué)生充分發(fā)展的有效途徑。本節(jié)課在自主探究階段,我鼓勵學(xué)生用多種方法把圓柱體轉(zhuǎn)化成長方體。在鞏固發(fā)展階段,我設(shè)計了兩道開放性的習(xí)題,其中計算圓柱體積木體積,可以從測量圓柱的底面半徑、直徑、周長等不同角度求解;計算旋轉(zhuǎn)直尺所形成的圓柱體積一題,旋轉(zhuǎn)軸不同得到的圓柱體是完全不一樣的,這體現(xiàn)了解題方法的多樣性。這樣安排從表面上看,似乎只是學(xué)生的空間觀念、基本技能得到了培養(yǎng);但深層次地分析,可以發(fā)現(xiàn)學(xué)生的思維得到了發(fā)展,創(chuàng)新精神、實踐能力得到了提高。這些具有多樣化解決策略的開放性的問題能盡可能地保證每個學(xué)生在掌握數(shù)學(xué)基本技能的前提下,不同的人在數(shù)學(xué)上得到不同的發(fā)展。

        【圓柱體積的教學(xué)反思】相關(guān)文章:

        《圓柱的體積》教學(xué)反思07-30

        圓柱的體積教學(xué)反思06-13

        《圓柱的體積》教學(xué)反思05-20

        圓柱的體積教學(xué)反思(優(yōu))07-09

        [優(yōu)選]《圓柱的體積》教學(xué)反思07-08

        [實用]圓柱的體積教學(xué)反思05-16

        《圓柱的體積》教學(xué)反思(推薦)05-22

        圓柱的體積教學(xué)反思范文10-25

        《圓柱的體積》教學(xué)反思[熱]07-06

        《圓柱的體積》教學(xué)反思(精華)07-05