三角形的內(nèi)角和教案
作為一名默默奉獻的教育工作者,時常要開展教案準(zhǔn)備工作,教案是教學(xué)藍圖,可以有效提高教學(xué)效率。我們該怎么去寫教案呢?以下是小編精心整理的三角形的內(nèi)角和教案,歡迎大家分享。
三角形的內(nèi)角和教案1
一、教材分析:
教材創(chuàng)設(shè)了一個有趣的問題情境,以此激發(fā)學(xué)生的興趣,引出探索活動。首先,教師應(yīng)使學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。大多數(shù)學(xué)生會想到用測量角的方法,此時就可以安排小組活動。每組同學(xué)可以畫出大小、形狀不同的若干個三角形,分別量出三個內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個三角形內(nèi)角和都在180°左右。三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內(nèi)角撕下來,再拼在一起,組成一個平角,因此三角形內(nèi)角和是180度。二是把三個內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個平角。每個活動都要使學(xué)生動手試一試,加深對三角形內(nèi)角和的認(rèn)識,體驗三角形內(nèi)角和性質(zhì)的探索過程。
二、學(xué)生狀況分析:
學(xué)生在本課學(xué)習(xí)前已經(jīng)認(rèn)識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),學(xué)生課上對數(shù)學(xué)知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題的策略多樣化。
三、學(xué)習(xí)目標(biāo):
1.通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
2.知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
3.發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。體驗數(shù)學(xué)活動的探索樂趣,體會研究數(shù)學(xué)問題的思想方法。
4.能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。
四、教具、學(xué)具準(zhǔn)備:
課件、6張三角形的紙、學(xué)生準(zhǔn)備任意三角形。
五、教學(xué)過程:
。ㄒ唬┰O(shè)疑導(dǎo)入(2分鐘)
師:在平的數(shù)學(xué)學(xué)習(xí)中,我們經(jīng)常會使用一種工具——三角尺。(課件出示兩個三角尺)每個三角尺里都有三個角,我們把它叫內(nèi)角。(板書內(nèi)角)為了方便老師分別給兩個三角尺的內(nèi)角編上號,誰能告訴我它們分別是多少度?
師:請同學(xué)們仔細(xì)觀察比較一下,這兩個三角形有什么共同之處?
生:它們的內(nèi)角和都是180°。
師:你是怎么得出180°的?
生:30°+60°+90°=180°
師:那第二個呢?
生:45°+45°+90°=180°
師:同學(xué)們,通過剛才的算一算,我們得到這兩個直角三角形的內(nèi)角和都是180°,由此你想到什么呢?(這兩個直角三角形的內(nèi)角和都是180°,那其他的三角形呢?)
生A:其他三角形的內(nèi)角和也是180°
。ǘ﹦邮植僮,探究問題,以動啟思(20分鐘)
1、師:這只是我們的一種猜測,三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ炞C。接下來,我們就來驗證三角形的內(nèi)角和,老師為大家準(zhǔn)備了1號——6號6個三角形,下面請每個同學(xué)選擇一個三角形來驗證。想一想,你準(zhǔn)備用什么樣的方法來驗證三角形的內(nèi)角和,然后開始驗證。
。1)小組合作,討論驗證方法
(2)匯報驗證方法、結(jié)果
現(xiàn)在我們一起交流一下驗證的結(jié)果,交流的時候,你先介紹一下驗證的是幾號三角形,然后說一說是什么三角形,最后說一說內(nèi)角和是多少。
師:同學(xué)們我、其實剛才我在驗證的時候很多同學(xué)有的還是量一量的.方法,從剛才過程中來看量一量的方法還是有誤差,所以老師建議大家可以是有更加準(zhǔn)確、簡便的方法來驗證。
師:好,請同學(xué)們觀察大屏幕,這些三角形的內(nèi)角和都是180°,那么請問,現(xiàn)在我們能不能以下結(jié)論:所以的三角形的內(nèi)角和都是180°呢?
生:可以
師:難道你們都沒有懷疑這是老師故意安排好的呢?(沒有)那我告訴你們這就是老師故意安排好的,或許也是一種巧合。我們在科學(xué)研究的道路上就要敢于質(zhì)疑的精神,接下來我們怎么辦?(我們應(yīng)該在找一些三角形驗證)這個建議非常好,找一些任意三角形這樣才有說服力。
師:每個同學(xué)都準(zhǔn)備的三角形帶了嗎?下面就請同學(xué)來驗證你們自己帶來的三角形的內(nèi)角和究竟是多少度。學(xué)生匯報交流。
同學(xué)們我們這樣驗證,驗證完嗎?(驗證不完)
師:剛才我們通過算一算、拼一拼、折一折的方法,不管是老師提供的三角形還是你們自己準(zhǔn)備的三角形這些直角、銳角、鈍角三角形的內(nèi)角和都是180°,那么我們可以概括成什么呢?
生:我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都是180°。
課件出示結(jié)論:三角形的內(nèi)角和是180°)。
師:看來我們的猜測是正確的,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。(板書:三角形的內(nèi)角和是1800
。ㄋ模╈柟叹毩(xí):(15分鐘)
學(xué)會了知識,我們就要懂得去運用。下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件)
師:一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?
師:把大三角形平均分成兩份。它的(指均分后的一個小三角形)內(nèi)角和是多少度?(生有的答90 °,有的180 °。)
師:哪個對?為什么?
生:180°,因為它還是一個三角形。
師:每個小三角形的度數(shù)是180°,那么這樣的兩個小三角形拼成一個大三角形,內(nèi)角和是多少度?這時學(xué)生的答案又出現(xiàn)了180°和360°兩種。
師:究竟誰對呢?大家可以在小組內(nèi)拼一拼,進行討論
生1:180°,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。
生2:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內(nèi)角和還是180°,不是360°。
師:三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
1、三角形ABC是等腰三角形,角A是頂角等于50度,角B=?角C=?
教師引導(dǎo)學(xué)生復(fù)習(xí)等腰三角形的特征,再讓學(xué)生談?wù)勏敕ā?/p>
教師匯總解法:
180度-50度=130度130度÷2度=65度
知識拓展:三角形ABC是等腰三角形,角B是底角等于50度,頂角角A=?(學(xué)生自主完成匯報結(jié)果)教師匯總解法:
50度×2=100度180度-100度=80度
2、一個直角三角形,一個銳角為35度,求另一個銳角的度數(shù)。
教師帶領(lǐng)學(xué)生復(fù)習(xí)直角三角形的特征。(指名匯報)解法不唯一,只要學(xué)生思路正確老師應(yīng)及時給與肯定。教師匯總解法:
(1)180度-90度=90度90度-35度=55度
(2)180度-35度=145度145度-90度=55度
(3)90度+35度=125度180度-125度=55度
(4)90度-35度=55度
3、下面的說法對嗎?
1)鈍角三角形的兩個銳角之和大于90度。()
2)大三角形的內(nèi)角和比小三角形的內(nèi)角和大。()
3)一個直角三角形中最多有一個直角。()
學(xué)生自主理解題意,教師引導(dǎo)學(xué)生說出對或錯的原因。
4、老師這還有一個難題需要解決,同學(xué)們愿意接受挑戰(zhàn)嗎?
師:老師手里有一個信封,信封里露出一來個角,這個角的度數(shù)是45度,請同學(xué)們判斷一下,隱藏在信封里的三角形是什么三角形?
師:信封里還露出一來個角,這個角的度數(shù)是45度,它是這個三角形內(nèi)角中最小的銳角,請同學(xué)們判斷一下,隱藏在信封里的三角形是什么三角形?
5、想一想,下面圖形的內(nèi)角和分別是多少?
學(xué)生小組討論如何分割,教師巡視并參與討論,討論完后小組匯報,指名板演。
。ㄎ澹┱n堂小結(jié)
師:一節(jié)課快要結(jié)束了,那么我們回想一下這節(jié)課你有什么收獲,什么感想?
三角形的內(nèi)角和教案2
【教學(xué)目標(biāo)】
1.學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。
2.在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學(xué)重點】
探究發(fā)現(xiàn)和驗證"三角形的內(nèi)角和為180度"的規(guī)律。
【教學(xué)難點】
理解并掌握三角形的內(nèi)角和是180度。
【教具準(zhǔn)備】
PPT課件、三角尺、各類三角形、長方形、正方形。
【學(xué)生準(zhǔn)備】
各類三角形、長方形、正方形、量角器、剪刀等。
【教學(xué)過程】
口算訓(xùn)練(出示口算題)
訓(xùn)練學(xué)生口算的速度與正確率。
一、謎語導(dǎo)入
(出示謎語)
請畫出你猜到的圖形。誰來公布謎底?
同桌互相看一看,你們畫出的三角形一樣嗎?
誰來說說,你畫出的是什么三角形?(學(xué)生匯報)
(1)銳角三角形,(銳角三角形中有幾個銳角?)
(2)直角三角形,(直角三角形中可以有兩個直角嗎?)
(3)鈍角三角形,(鈍角三角形中可以有兩個鈍角嗎?)
看來,在一個三角形中,只能有一個直角或一個鈍角,為什么不能有兩個直角或兩個鈍角呢?三角形的三個角究竟存在什么奧秘呢?這節(jié)課,我們一起來學(xué)習(xí)"三角形的內(nèi)角和。"(板書課題:三角形的內(nèi)角和)
看到這個課題,你有什么疑問嗎?
(1)什么是內(nèi)角?有沒有同學(xué)知道?
內(nèi):里面,三角形里面的角。
三角形有幾個內(nèi)角呢?請指出你畫的三角形的內(nèi)角,并分別標(biāo)上∠1、∠2、∠3.
(2)誰還有疑問?什么是內(nèi)角和?誰來解釋?(三個內(nèi)角度數(shù)的和)。
(3)大膽猜測一下,三角形的內(nèi)角和是多少度呢?
【設(shè)計意圖】
創(chuàng)設(shè)數(shù)學(xué)化的情境。學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣".這樣引入問題恰好可以利用學(xué)生的這種認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣。
二、探究新知
有猜想就要有驗證,我們一起來探究用什么方法能知道三角形的內(nèi)角和呢?
1、確定研究范圍
先請大家想一想,研究三角形的內(nèi)角和,是不是應(yīng)該包括所用的三角形?
只研究你畫出的那一個三角形,行嗎?
那就隨便畫,挨個研究吧?(太麻煩了)
怎么辦?請你想個辦法吧。
分類研究:銳角三角形,直角三角形,鈍角三角形(貼圖)
2、探究三角形的內(nèi)角和
思考一下:你準(zhǔn)備用什么方法探究三角形的內(nèi)角和呢?
小組合作:從你的學(xué)具袋中,任選一個三角形,來探究三角形的內(nèi)角和是多少度?
小組匯報:
(1)量一量:把三角形三個內(nèi)角的度數(shù)相加。
直接測量的方法挺好,雖然測量有誤差,但我們知道了三角形的內(nèi)角和在180°左右。究竟是不是一定就是180°呢?哪個小組還有不同的方法?
(2)拼一拼:把三角形的三個內(nèi)角剪下來,拼成了一個平角。
能想到這種剪一剪拼一拼的方法,真不簡單。三個角拼在一起,看起來像個平角,究竟是不是平角呢?誰還有別的方法?
(3)折一折:把三角形的三個角折下來,拼成了一個平角。
這種方法真了不起,能借助平角的度數(shù)來推想三角形內(nèi)角和是180°。
總結(jié):同學(xué)們動腦思考,動手操作,運用不同的方法來驗證三角形的內(nèi)角和。這三種方法都很好,但在操作過程中,難免會有誤差,不太有說服力。我們能不能借助學(xué)過的圖形,更科學(xué)更準(zhǔn)確的來驗證三角形的內(nèi)角和?
3、演繹推理的方法。
正方形四個角都是直角,正方形內(nèi)角和是多少度?
你能借助正方形創(chuàng)造出三角形嗎?(對角折)
把正方形分成了兩個完全一樣的直角三角形,每個直角三角形的內(nèi)角和:360°÷2=180°
再來看看長方形:沿對角線折一折,分成了兩個完全一樣的直角三角形,內(nèi)角和:360°÷2=180°
這種方法避免了在剪拼過程中操作出現(xiàn)的誤差,舉例驗證,你發(fā)現(xiàn)了什么?
通過驗證,知道了直角三角形的內(nèi)角和是180度。
你能把銳角三角形變成直角三角形嗎?
把銳角三角形沿高對折,分成了兩個直角三角形。
一個直角三角形的內(nèi)角和是180°,那么這個銳角三角形的內(nèi)角和就是180°×2=360°了,對嗎?(360-180=180°)
通過計算,我們知道了這個銳角三角形的內(nèi)角和是180°,那么所有的銳角三角形的內(nèi)角和都是180°嗎?你是怎么知道的?
通過剛才的計算,你發(fā)現(xiàn)了什么?(銳角三角形內(nèi)角和180°)
鈍角三角形的內(nèi)角和,你們會驗證嗎?誰來說說你的想法?180×2-90-90=180°
通過驗證,你又發(fā)現(xiàn)了什么?(鈍角三角形內(nèi)角和180°)
4、總結(jié)
通過分類驗證,我們發(fā)現(xiàn):直角180,銳角180,鈍角180,也就是說:三角形的內(nèi)角和是180°。也驗證了我們的猜想是正確的。(板書)
5、想一想,下面三角形的內(nèi)角和是多少度?(小--大)
你有什么新發(fā)現(xiàn)?(三角形的內(nèi)角和與它的大小,形狀沒有關(guān)系。)
【設(shè)計意圖】
為了滿足學(xué)生的'探究欲望,發(fā)揮學(xué)生的主觀能動性,通過獨立探究和組內(nèi)交流,實現(xiàn)對多種方法的體驗和感悟。學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。
三、自主練習(xí)
1、在一個三角形中,如果想求一個角的度數(shù),至少得知道幾個角的度數(shù)呢?(2個)那我們就試一試,挑戰(zhàn)第一關(guān)。(兩道題)
2、算得真快!如果只知道一個角的度數(shù),還能求出未知角的度數(shù)嗎?挑戰(zhàn)第二關(guān)。(三道題)
3、說得真清楚,如果一個角的度數(shù)也不知道,你還能求出未知角的度數(shù)嗎?挑戰(zhàn)第三關(guān)。(一道題)
師:同學(xué)們真了不起,從知道兩個角的度數(shù),到知道一個角的度數(shù),再到一個角的度數(shù)也不知道,都能正確求出未知角的度數(shù)。
4、學(xué)無止境,課下,請你利用三角形的內(nèi)角和,探究一下四邊形、五邊形、六邊形的內(nèi)角和各是多少度?
【設(shè)計意圖】
練習(xí)由淺入深,層層遞進。從知道兩個角的度數(shù),到知道一個角的度數(shù),再到一個角的度數(shù)也不知道,要求學(xué)生求出未知角的的度數(shù),梯度訓(xùn)練,拓展思維。
四、課堂總結(jié)
同學(xué)們,回想一下,這節(jié)課我們學(xué)習(xí)了什么?通過這節(jié)課的學(xué)習(xí),你有哪些收獲呢?
真了不起,同學(xué)們不僅學(xué)到了知識,還掌握了學(xué)習(xí)的方法。"在數(shù)學(xué)的天地里,重要的不是我們知道什么,而是我們怎么知道的",在這節(jié)課上,重要的不是我們知道了三角形的內(nèi)角和是180°,而是我們通過猜測,一步一步驗證,得到這個規(guī)律的過程。
課后反思
《三角形的內(nèi)角和》是五四制青島版四年級上冊第四單元的信息窗二,本節(jié)課是在學(xué)生學(xué)習(xí)了與三角形有關(guān)的概念、邊、角之間的關(guān)系的基礎(chǔ)上,讓學(xué)生動手操作,通過一系列活動得出"三角形的內(nèi)角和等于180°".
本著"學(xué)貴在思,思源于疑"的思想,這節(jié)課我不斷創(chuàng)設(shè)問題情境,讓學(xué)生去猜想、去探究、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念。"問題的提出往往比解答問題更重要",其實三角形內(nèi)角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是只是"知其然而不知其所以然".
為此,我設(shè)計了大量的操作活動:畫一畫、量一量、折一折、拼一拼等,我沒有限定了具體的操作環(huán)節(jié)。在操作活動中,老師有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不亂。利用課件演示,更直觀的展示了活動過程,生動又形象,吸引學(xué)生的注意力。使學(xué)生感受到每種活動的特點,這對他認(rèn)識能力的提高是有幫助的。
最后通過習(xí)題鞏固三角形內(nèi)角和知識,培養(yǎng)學(xué)生思維的廣闊性,為了強化學(xué)生對這節(jié)課的掌握,從知道兩個角的度數(shù),到知道一個角的度數(shù),再到一個角的度數(shù)也不知道,要求學(xué)生求出未知角的的度數(shù),層級練習(xí),步步加深,梯度訓(xùn)練。
教學(xué)是遺憾的藝術(shù)。當(dāng)然本節(jié)課的教學(xué)中,存在許多不盡如意之處:
1、讓學(xué)生養(yǎng)成良好的學(xué)具運用習(xí)慣,特別是小組學(xué)生在合作操作時,應(yīng)有效指導(dǎo),對學(xué)生及時評價,激勵表揚,調(diào)動學(xué)生學(xué)習(xí)的積極性與主動性。
2、學(xué)生在介紹剪拼的方法時,可以讓介紹的學(xué)生先上臺演示是如何把內(nèi)角拼在一起,這樣學(xué)生在動手操作的時候就可以節(jié)省時間。
3、在做練習(xí)時,為了趕時間,題出現(xiàn)的頻率較快,留給學(xué)生計算思考的時間不足,可能只照顧到好學(xué)生的進程,沒有關(guān)注全體學(xué)生,今后應(yīng)注意這一點。
教學(xué)是一門藝術(shù),上一節(jié)課容易,上好一節(jié)課談何容易,在今后的課堂教學(xué)中,只有勤學(xué)、多練,才能更好的為學(xué)生的學(xué)習(xí)和成長服務(wù),讓自己的人生舞臺綻放光彩。
三角形的內(nèi)角和教案3
教材分析
教材的小標(biāo)題為“探索與發(fā)現(xiàn)”,說明這部分內(nèi)容要求學(xué)生自主探索,并發(fā)現(xiàn)有關(guān)三角形內(nèi)角和性質(zhì)。
教材創(chuàng)設(shè)了一個有趣的問題情境,以此激發(fā)學(xué)生的興趣,引出探索活動。首先,教師應(yīng)使學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。大多數(shù)學(xué)生會想到用測量角的方法,此時就可以安排小組活動。每組同學(xué)可以畫出大小、形狀不同的若干個三角形,分別量出三個內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個三角形內(nèi)角和都在180°左右。
三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內(nèi)角撕下來,再拼在一起,組成一個平角,因此三角形內(nèi)角和是180°。二是把三個內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個平角。每個活動都要使學(xué)生動手試一試,加深對三角形內(nèi)角和的認(rèn)識,體驗三角形內(nèi)角和性質(zhì)的探索過程。
另外,教材還從兩個方面引導(dǎo)學(xué)生應(yīng)用三角形的內(nèi)角和:一是根據(jù)三角形中已知的兩個角的度數(shù),求另一個角的度數(shù);二是直角三角形里的兩個銳角和等于90°,鈍角三角形里的兩個銳角和小于90°。
學(xué)情分析
學(xué)生在前面的學(xué)習(xí)中已經(jīng)認(rèn)識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),知道了平角是180°;學(xué)生通過前幾年的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣,所以在學(xué)生具備這些數(shù)學(xué)知識和能力的基礎(chǔ)上,來引導(dǎo)學(xué)生探索和發(fā)現(xiàn)三角形內(nèi)角和是180°這一性質(zhì)。
要讓學(xué)生明確一個三角形分成兩個小三角形后,每個三角形內(nèi)角和還是180°,兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和也是180°。
教學(xué)目標(biāo)
1、知識目標(biāo):讓學(xué)生探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。
2、能力目標(biāo):培養(yǎng)學(xué)生動手操作和合作交流的能力,促進掌握學(xué)習(xí)數(shù)學(xué)的方法。
3、情感目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。
教學(xué)重點和難點
教學(xué)重點:掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題。
教學(xué)難點:讓學(xué)生經(jīng)歷探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°的過程。
教學(xué)過程:
(一)、激趣導(dǎo)入:
1、認(rèn)識三角形內(nèi)角
我們已經(jīng)認(rèn)識了什么是三角形,誰能說出三角形有什么特點?
(三角形是由三條線段圍成的圖形,三角形有三個角,…。)
請看屏幕(課件演示三條線段圍成三角形的過程)。
三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及它的弧線),我們把三角形里面的這三個角分別叫做三角
形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)
2、設(shè)疑激趣
現(xiàn)在有兩個三角形朋友為了一件事正在爭論,我們來幫幫它們。(播放課件)
同學(xué)們,請你們給評評理:是這樣嗎?
現(xiàn)在出現(xiàn)了兩種不同的意見,有的同學(xué)認(rèn)為大三角形的.內(nèi)角和大,還有部分同學(xué)認(rèn)為兩個三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰說得對呢?
這節(jié)課我們就一起來研究這個問題。(板書課題:三角形的內(nèi)角和)
(二)、動手操作,探究新知
1、探究特殊三角形的內(nèi)角和
師拿出兩個三角板,問:它們是什么三角形?
(直角三角形)
請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。
。ㄓ捎趯W(xué)生在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),所以能夠很快求得每塊三角尺的3個角的和都是180°)
從剛才兩個三角形內(nèi)角和的計算中,你們發(fā)現(xiàn)了什么?
(這兩個三角形的內(nèi)角和都是180°)。
這兩個三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形內(nèi)角和
(1).猜一猜。
猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)
。2).操作、驗證一般三角形內(nèi)角和是180°。
所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
。ǹ梢韵攘砍雒總內(nèi)角的度數(shù),再加起來。)
測量計算,是嗎?那就請四人小組共同計算吧!
老師讓每個同學(xué)都準(zhǔn)備了直角三角形、銳角三角形和鈍角三角形三種不同的三角形,并量出了每個內(nèi)角的度數(shù),下面就請同學(xué)們在小組內(nèi)每種各選一個求出它們的內(nèi)角和,把結(jié)果填在表中:
(3)小組匯報結(jié)果。
請各小組匯報探究結(jié)果
提問:你們發(fā)現(xiàn)了什么?
小結(jié):通過測量計算我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°左右。
3繼續(xù)探究
。1)動手操作,驗證猜測。
沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學(xué)們動腦筋想一想,能通過動手操作來驗證嗎?
。ㄏ刃〗M討論,再匯報方法)
大家的辦法都很好,請你們小組合作,動手操作。
。2)學(xué)生操作,教師巡視指導(dǎo)。(3)全班交流匯報驗證方法、結(jié)果。
學(xué)生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)
我們可以得出一個怎樣的結(jié)論?(三角形的內(nèi)角和是180°)
引導(dǎo)學(xué)生通過剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角,使學(xué)生證實三角形內(nèi)角和確實是180°,測量計算有誤差。
5、辨析概念,透徹理解。
。ǔ鍪疽粋大三角形)它的內(nèi)角和是多少度?
。ǔ鍪疽粋很小的三角形)它的內(nèi)角和是多少度?
一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?(學(xué)生有的答360°,有的180°.)
把大三角形平均分成兩份。每個小三角形的內(nèi)角和是多少度?(生有的答90°,有的180°。)
這兩道題都有兩種答案,到底哪個對?為什么?
。▽W(xué)生個個臉上露出疑問。)
大家可以在小組內(nèi)用三角尺拼一拼,也可以畫一畫,互相討論。
經(jīng)過一翻激烈的討論探究后,學(xué)生發(fā)現(xiàn):三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
。ㄈ┬〗Y(jié)
剛才同學(xué)們用很多方法證明了無論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
(四)、鞏固練習(xí),拓展應(yīng)用
下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件)
1、求三角形中一個未知角的度數(shù)。
(1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
。2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判斷
。1)一個三角形的三個內(nèi)角度數(shù)是:90°、75°、25°。()
。2)一個三角形至少有兩個角是銳角。()
(3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。()
(4)直角三角形的兩個銳角和等于90°。()
3、解決生活實際問題。
。1)爸爸給小紅買了一個等腰三角形的風(fēng)箏,它的一個底角是70°,它的頂角是多少度?
。2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。
4、拓展練習(xí)。
利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)
小組的同學(xué)討論一下,看誰能找到最佳方法。
學(xué)生匯報,在圖中畫上虛線,教師課件演示。
請同學(xué)們自己在練習(xí)本上計算。
(四)、課堂總結(jié)
通過這節(jié)課的學(xué)習(xí),你有哪些收獲?
三角形的內(nèi)角和教案4
一、教學(xué)目標(biāo):
1、理解掌握三角形內(nèi)角和是180°,并運用這一性質(zhì)解決一些簡單的問題。
2、通過直觀操作的方法,引導(dǎo)學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實驗活動中,體驗探索的過程和方法。
3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗。
二、教學(xué)重、難點:
重點:探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。
難點:運用三角形內(nèi)角和等于180°的性質(zhì)解決一些實際問題。
教具:課件、三角形若干。
學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。
三、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課
我們已經(jīng)學(xué)過了三角形的知識,我們來復(fù)習(xí)一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細(xì)聽它們都說了什么?
教師放課件。
課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”
都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學(xué)生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。
(板書課題:三角形內(nèi)角和)
。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律
1、探究三角形內(nèi)角和的特點。
。1)檢查作業(yè),并提出要求:
昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。
小組活動記錄表
小組成員的姓名
三角形的形狀
每個內(nèi)角的度數(shù)
三角形內(nèi)角的和
。ㄒ螅禾钔瓯砗螅埿〗M成員仔細(xì)觀察你發(fā)現(xiàn)了什么?)
②小組合作。
會使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。
各組長進行匯報。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。
師:實際上,三角形三個內(nèi)角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的'數(shù)據(jù)。
2、驗證推測。
那么同學(xué)們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學(xué)們在下面操作進行體驗,再用課件演示把三個內(nèi)角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學(xué)生也動手試一試。
通過我們的驗證我們可以得出三角形的內(nèi)角和是180°。
板書:(三角形內(nèi)角和等于180°。)
3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)
4、同學(xué)們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)
出示書28頁,試一試第3題,并講解。
說明:在直角三角形中一個銳角等于30°,求另一個銳角。
生獨立做,再訂正格式、以及強調(diào)不要忘記寫度。
小結(jié):同學(xué)們有沒有不明白的地方?如果沒有我們來做練習(xí)。
。ㄈ╈柟叹毩(xí),拓展應(yīng)用
1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?
完成,并填在書上。講一講直角三角形還有什么解法。
2、出示29頁第2題。
說明:一個鈍角三角形說:我的兩個銳角之和大于90°。
一個直角三角形說:我的兩個銳角之和正好等于90°。讓學(xué)生判斷。
3、畫一畫:
出示四邊形和六邊形。運用三角形內(nèi)角和是180°計算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?
三角形內(nèi)角和180度是科學(xué)家帕斯卡12歲時發(fā)現(xiàn)的。我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
。ㄋ模┱n堂總結(jié)
讓學(xué)生說說在這節(jié)課上的收獲!
三角形的內(nèi)角和教案5
教學(xué)內(nèi)容
人教版小學(xué)數(shù)學(xué)第八冊第五單元第85頁例5
任務(wù)分析
教材分析: 《三角形的內(nèi)角和》是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(數(shù)學(xué))四年級下冊第五單元《三角形》中的一個教學(xué)內(nèi)容。這部分內(nèi)容是在學(xué)生學(xué)習(xí)了角的度量,角的分類,三角形的認(rèn)識,三角形的分類的基上進行教學(xué)的。它是三角形的一個重要性質(zhì),有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學(xué)習(xí)的基礎(chǔ)。教材通過實際操作,引導(dǎo)學(xué)生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內(nèi)角和都是180度。教材在編寫上也深刻的體現(xiàn)出了讓學(xué)生探究的特點,通過動手操作探究發(fā)現(xiàn)三角形內(nèi)角和為180度。教學(xué)內(nèi)容的核心思想體現(xiàn)在讓學(xué)生經(jīng)歷猜想—驗證—結(jié)論的過程,來認(rèn)識和體驗三角形內(nèi)角和的特點。
學(xué)情分析:通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。在四年級上冊《角的度量》的學(xué)習(xí)中,學(xué)生有接觸到兩把三角尺的內(nèi)角和是180°;并在相關(guān)的補充習(xí)題和數(shù)學(xué)練習(xí)冊的練習(xí)中,也有要求測量任意三角形的三個內(nèi)角的度數(shù)并求出它們的和的練習(xí),很多學(xué)生已經(jīng)知道了三角形的內(nèi)角和是180°。但是要真正理解和掌握需要進行驗證,因此,學(xué)生在這節(jié)課上的主要任務(wù)是通過實驗操作驗證三角形的內(nèi)角和是180°。
教學(xué)目標(biāo)
1、通過實驗、操作、推理歸納出三角形內(nèi)角和是180°。
2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形未知角的度數(shù)并運用解決實際生活問題。
3、通過拼擺,感受數(shù)學(xué)的轉(zhuǎn)化思想。
教學(xué)重點
探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”。
教學(xué)難點
驗證三角形的內(nèi)角和是180度。
教學(xué)準(zhǔn)備
多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。
教學(xué)過程
一、復(fù)習(xí)舊知,學(xué)習(xí)鋪墊
1、一個平角是多少度?等于幾個直角?
2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解規(guī)律
1、說明三角形的三個內(nèi)角和
說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?
師(指出):三角形的這三個角叫做三角形的三個內(nèi)角,這三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。
板書課題:“三角形的內(nèi)角和”。
揭示課題:今天我們一起來探究三角形的內(nèi)角和有什么規(guī)律。
2、探究三角形的內(nèi)角和規(guī)律
探究1:量一量,算一算
以小組為單位,用量角器計算出三種三角形的內(nèi)角和各是多少度?
生討論匯報,并引導(dǎo)學(xué)生發(fā)現(xiàn):三角形的內(nèi)角和接近180°。
師:三角形的內(nèi)角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?
學(xué)生預(yù)設(shè):有學(xué)生可能會說出三角形的內(nèi)角和就是180°,這時老師可以提問,為什么就是180°?我們要進行驗證,你有什么辦法呢?
探究2:擺一擺,拼一拼
引導(dǎo):我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內(nèi)角和有誤差。能不能換一種方法減少度量的次數(shù),減少誤差呢?
生可能很難想到,可以提示學(xué)生:把三個內(nèi)角拼成一個角就只要量一次角。讓我們一起動手做一做
如圖:
(1)
銳角的三個內(nèi)角拼成了一個平角,引導(dǎo)學(xué)生說出:銳角三角形的內(nèi)角和是180°.
。2)
讓學(xué)生小組合作用同樣的.方法,發(fā)現(xiàn):直角三角形的內(nèi)角和也是180°.
。3)
讓學(xué)生獨立用同樣的方法,發(fā)現(xiàn):鈍角三角形的內(nèi)角和也是180°.
引導(dǎo)學(xué)生歸納:三角形的內(nèi)角和是180°。
是不是所有的三角形的內(nèi)角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)
板書:三角形的內(nèi)角和是180°
三、鞏固練習(xí),應(yīng)用規(guī)律
1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數(shù)嗎?
學(xué)生獨立完成,并說出原因:因為三角形的內(nèi)角和是180°,也就是∠1+∠2+∠3=180°,借助圖像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?
學(xué)生分析:因為等腰三角形的兩個底角相等,又因為三角形的內(nèi)角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
四、拓展練習(xí),深化規(guī)律
1、求出下面各角的度數(shù)。
。1) (2)
2、判斷
。1)三角形任意兩個內(nèi)角的和大于第三個角。( )
。2)銳角三角形任意兩個內(nèi)角的和大于直角。( )
。3)有一個角是60°的等腰三角形不一定是等邊三角形。( )
3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?
( ) ( )
五、課堂小結(jié),分享提升
1、談?wù)勥@節(jié)課你有什么收獲?
2、課后思考題
三角形的內(nèi)角和是180°,那長方形、正方形的內(nèi)角和呢?(根據(jù)三角形的內(nèi)角和是180°求,參考課本88頁第12題,完成89頁16題)
板書設(shè)計
三角形的內(nèi)角和教案6
教學(xué)目標(biāo):
1、讓學(xué)生通過觀察、操作、比較、歸納,發(fā)現(xiàn)“三角形的內(nèi)角和是180°”。
2、讓學(xué)生學(xué)會根據(jù)“三角形的內(nèi)角和是180°”這一知識求三角形中一個未知角的度數(shù)。
教學(xué)重點:探索三角形內(nèi)角和是180°
教學(xué)難點:探索三角形內(nèi)角和是180°
設(shè)計理念:通過自主探索、合作交流的方式進行學(xué)習(xí)
教學(xué)準(zhǔn)備:三角尺。
教學(xué)步驟
教師活動
學(xué)生活動
一、創(chuàng)設(shè)情境
激趣導(dǎo)入
請量出自己準(zhǔn)備的三角形的三個角的度數(shù)
談話設(shè)疑:只要你們說出其中兩個角的度數(shù),我能猜出第3個角的度數(shù)
師生互動生說師猜
用自己的三角形按要求操作
同桌交流(小組交流)
對照檢查(有異議的做好記錄)
二、自主探索
獲取新知
1、初步感知內(nèi)角和180°
2、實驗驗證
自主探索
請觀察自己手中的三角板
它們是什么三角形?
屏幕顯示同樣的三角形,指名指出角
敘述:這三個角是三角形的三個內(nèi)角。
你知道三角板三個內(nèi)角的和是多少度嗎?
檢查學(xué)生活動情況,指名說內(nèi)角和
提問:你發(fā)現(xiàn)了什么?
三角尺的三個內(nèi)角和180°,是不是每個三角形的內(nèi)角和都是180°呢?
你打算用什么方法驗證呢?
。ǜ鶕(jù)情況適當(dāng)提示不同的方法)
巡視、指導(dǎo)、了解學(xué)生實驗情況
組織學(xué)生演示、交流
結(jié)合實驗交流情況,提問:通過多次實驗,你們能得出什么結(jié)論嗎?
板書:三角形的內(nèi)角和是180°
現(xiàn)在你能像老師那樣猜出角度嗎?
取出各自的三角板觀察
交流(它們都是直角三角形)
互相指三個角
(認(rèn)識內(nèi)角,互相交流)
學(xué)生計算,同桌交流各自的想法
。▋蓚三角板內(nèi)角和都是180°)
猜測并交流
同桌討論
匯報交流
分組合作驗證三角形內(nèi)角和
交流實驗方法
互相交流、提示
同桌互相猜角度
三、應(yīng)用知識
解決問題
1、“試一試”
2、“想想做做”第1題
“想想做做”第2題
“想想做做”第3題
出示“試一試”巡視個別指導(dǎo)
提問:∠3多少度?
你是怎么算的?(適當(dāng)提問)
請大家量一量,看看與算出的結(jié)果是否一樣?
提出練習(xí)要求
你是怎么算的?
第三題還可以怎么算?為什么?
用兩塊完全一樣的三角形可以拼成一個三角形嗎?(學(xué)生拼好后選擇不同拼法展示)
哪些是拼成的三角形的內(nèi)角?
這些角分別是多少度?
拼成的三角形的內(nèi)角和是多少度?
結(jié)合學(xué)生回答,小結(jié):任何一個三角形的內(nèi)角和都是180°
提出操作要求
正方形的內(nèi)角和是多少度?怎么算?
對折后是什么圖形?內(nèi)角分別是多少度?內(nèi)角和呢?
再對折后圖形有什么變化?內(nèi)角分別是多少度?內(nèi)角和呢?
兩次對折出的三角形什么在變?什么沒變?
出示教師用三角尺,與你們的三角尺比一比,誰的三角尺內(nèi)角和大?
獨立完成∠3角度的`計算并驗證
獨立完成交流算法(從180度中依次去減)
觀察交流:90°-55°=35°
獨立動手實踐
交流不同拼法
小組中分別指出拼成的三角形的內(nèi)角,并且說出它們的角的度數(shù)
獨立計算,交流:拼成的三角形的內(nèi)角和還是180°
獨立按要求操作并填寫
四個內(nèi)角都是直角,內(nèi)角和360°
對折后是三角形,三個內(nèi)角分別是:90°45°45°,內(nèi)角和是180°
再對折后是三角形,三個內(nèi)角分別是:90°45°45°內(nèi)角和是180°
學(xué)生交流、口答
四、評價總結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?還有什么不明白的地方?
交流感受,評價總結(jié),形成知識結(jié)構(gòu)網(wǎng)絡(luò)。
五、作業(yè)設(shè)計
1、一個直角三角形的一個銳角是400,另一個銳角是多少度?
2、在一個三角形中,∠1=280,∠2=520,∠3是多少度?這是一個什么三角形?
3、用兩塊完全一樣的三角尺拼成一個大的三角形,這個大的三角形的內(nèi)角和是多少度?
三角形的內(nèi)角和教案7
【設(shè)計理念】
新課標(biāo)重視讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,要求教師創(chuàng)設(shè)有效的問題情境激發(fā)學(xué)生的參與欲望,提供足夠的時間和空間讓學(xué)生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學(xué)生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數(shù)學(xué)問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。
【教材內(nèi)容】
新人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書四年級下冊數(shù)學(xué)第67頁例6、“做一做”及練習(xí)十六的第1、2、3題。
【教材分析】
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學(xué)的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間和時間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、拼等活動,讓學(xué)生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。
【學(xué)情分析】
1、在學(xué)習(xí)本課時,學(xué)生已經(jīng)有了探索三角形內(nèi)角和的知識基礎(chǔ):知道直角和平角的度數(shù),會用量角器度量角的度數(shù);認(rèn)識長方形、正方形,知道他們的四個角都是直角;認(rèn)識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。
。、已經(jīng)有一部分學(xué)生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。
【教學(xué)目標(biāo)】
1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。
2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。
3.在參與數(shù)學(xué)學(xué)習(xí)活動的過程中,獲得成功的.體驗,感受數(shù)學(xué)探究的嚴(yán)謹(jǐn)與樂趣。
【教學(xué)重點】
探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。
【教學(xué)難點】
驗證“三角形的內(nèi)角和是180°”。
【教(學(xué))具準(zhǔn)備】
多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。
【教學(xué)步驟】
一、復(fù)習(xí)舊知 引出課題
1、你已經(jīng)知道有關(guān)三角形的哪些知識?
2、出示課題:三角形的內(nèi)角和
【設(shè)計意圖:也自然導(dǎo)入新課。】
二、提出問題 引發(fā)猜想
1、提出問題:看到這個課題,你有什么問題想問的?
預(yù)設(shè):
。1)三角形的內(nèi)角指的是哪些角?
(2)三角形的內(nèi)角和是什么意思?
(3)三角形的內(nèi)角一共是多少度?
2、引發(fā)猜想
猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?
【設(shè)計意圖:提出一個問題比解決一個問題更重要。課始在復(fù)習(xí)三角形已學(xué)知識后,引導(dǎo)學(xué)生提出有關(guān)三角形的新問題,讓學(xué)生學(xué)習(xí)自己想研究的內(nèi)容,無疑激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的問題意識。由于學(xué)生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學(xué)生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。】
三、操作驗證 形成結(jié)論
1、交流驗證方法:
。1)用什么方法證明三角形的內(nèi)角和是180度呢?
預(yù)設(shè):
、倭克惴
②剪拼法
、壅燮捶ǖ
。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?
2、動手驗證
3、全班匯報交流
4、小結(jié):剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結(jié)論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。
6、形成結(jié)論:任意三角形的內(nèi)角和是180 °。
【設(shè)計意圖:
《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進行全班交流,給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結(jié)論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動中積累基本的數(shù)學(xué)活動經(jīng)驗,為后續(xù)的學(xué)習(xí)提供了經(jīng)驗支撐。】
四、應(yīng)用結(jié)論 解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風(fēng)箏的頂角是多少度?
3、辨析訓(xùn)練,完善結(jié)論。
五、課堂總結(jié),歸納研究方法
今天這節(jié)課你學(xué)到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:用今天所學(xué)的方法繼續(xù)研究四邊形的內(nèi)角和。
三角形的內(nèi)角和教案8
【教學(xué)內(nèi)容】:人教版第八冊第85頁例5及“做一做”和練習(xí)十四的第9、10、12題。
【課程標(biāo)準(zhǔn)】:認(rèn)識三角形,通過觀察、操作、了解三角形內(nèi)角和是180度。
【學(xué)情分析】:
學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內(nèi)角和是多少度,學(xué)生是不陌生的,因為學(xué)生有以前認(rèn)識角、用量角器量三角板三個角的度數(shù)以及三角形的分類的基礎(chǔ),學(xué)生也有提前預(yù)習(xí)的習(xí)慣,很多孩子都能回答出三角形的內(nèi)角和是180度,但是他們卻不知道怎樣才能得出三角形的內(nèi)角和是180度。另外,經(jīng)過三年多的學(xué)習(xí),學(xué)生們已具備了初步的動手操作能力、主動探究能力以及小組合作的能力。
【學(xué)習(xí)目標(biāo)】:
1、結(jié)合具體圖形能描述出三角形的內(nèi)角、內(nèi)角和的含義。
2、在教師的引導(dǎo)下,通過猜測和計算能說出三角形的內(nèi)角和是180°。
3、在小組合作交流中,通過動手操作,實驗、驗證、總結(jié)三角形的內(nèi)角和是180°,同時發(fā)展動手動腦及分析推理能力。
4、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。
【評價任務(wù)設(shè)計】:
1、利用孩子已有經(jīng)驗,通過教師的提問和引導(dǎo)以及學(xué)生的直觀觀察,說出三角形的內(nèi)角、內(nèi)角和的含義。達成目標(biāo)1。
2、在教師的引導(dǎo)下,以游戲的形式學(xué)生通過猜測三角形的內(nèi)角和是多少度,然后通過計算說出三角形的內(nèi)角和是180°的結(jié)論。達成目標(biāo)2。
3、在小組合作交流中,通折一折、拼一拼和擺一擺的動手操作、實驗、驗證并歸納總結(jié)出三角形的內(nèi)角和是180°。達成目標(biāo)3。
4、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過“做一做”和習(xí)題第9、10、12題達成目標(biāo)4和目標(biāo)3。
【重難點】
教學(xué)重點:探索和發(fā)現(xiàn)三角形的.內(nèi)角和是180°。
教學(xué)難點: 充分發(fā)揮學(xué)生的主體作用,自主探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°
【教學(xué)過程】
一、復(fù)習(xí)準(zhǔn)備。
1、三角形按角的不同可以分成哪幾類?
2、一個平角是多少度?1個平角等于幾個直角?兩個三角板上各個角的度數(shù)?
二、探究新知
。ㄒ唬﹦(chuàng)設(shè)情境,生成問題,認(rèn)識三角形的內(nèi)角及內(nèi)角和
。úシ耪n件)在圖形王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大。”銳角三角形也不示弱:“你雖然有一個鈍角,可其它兩個角都很小。但是我的三個角都不是很小。我的內(nèi)角和比你大”。直角三角形說:“別爭了,三角形的內(nèi)角和是180°,我們的內(nèi)角和是一樣大的!
師:動畫片看完了,請大家想一想,什么是三角形的內(nèi)角和?
師引導(dǎo)學(xué)生說出三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。
多媒體展示:三條線段在圍成三角形后,在三角形內(nèi)形成了三個角(課件閃爍三個角的弧線),我們把三角形內(nèi)的這三個角,分別叫做三角形的內(nèi)角(板書:內(nèi)角),這三個內(nèi)角的度數(shù)的和就叫做三角形的內(nèi)角和。
。ㄟ_成目標(biāo)1:利用多媒體播放動畫和孩子已有的經(jīng)驗,通過教師的提問和引導(dǎo),學(xué)生說出什么叫三角形的內(nèi)角及內(nèi)角和達成目標(biāo)1。多媒體創(chuàng)設(shè)的情景也為目標(biāo)二打好鋪墊)
(二)、引導(dǎo)猜測三角形的內(nèi)角和是180度
師:在課件展示的直角三角形、鈍角三角形、銳角三角形的對話中,你贊同誰的觀點?
預(yù)設(shè):學(xué)生回答直角三角形。
師:你為什么這么認(rèn)為呢?
生:我是想三角板上三個角的度數(shù)是90度、45度、45度加起來是180度,90度、60度、30度加起來也是180度。
(三)、驗證三角形的內(nèi)角和是180度
1.確定研究范圍
師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究這一個行不行?(不行)那就隨便畫,挨個研究吧。(學(xué)生反對)那該怎樣去驗證呢?請你們想個辦法吧!
師:分類驗證是科學(xué)驗證的一種好方法,下面我們就用分類驗證的方法來驗證一下,看看三角形的內(nèi)角和是不是180°?
2.操作驗證
教師讓每個學(xué)習(xí)小組拿出課前制作的各種各樣的三角形,先找到三個內(nèi)角,在每個內(nèi)角標(biāo)上序號1、2、3。然后請任意用一個三角形,想辦法驗證我們的猜想。如果有困難,可以啟用老師提供的“智慧錦囊”或者尋求同學(xué)的幫助。
智慧錦囊:
。1)要知道三個內(nèi)角的和,只要知道三個角分別是多少度就可以了,你覺得哪個工具可以測出角的度數(shù)?試一試。
。2)180°的角是個特殊的角,它是個什么角?你能想辦法將這三個內(nèi)角轉(zhuǎn)化成這樣的角嗎?
3.匯報交流
師:誰來匯報你的驗證結(jié)果?
(1)測算法
師小結(jié):用量的方法驗證既然有誤差、不準(zhǔn),結(jié)論就難以讓人信服,那有沒有辦法更好地驗證我們的猜測呢?誰還有別的方法?
。2)剪拼法
。3)折拼法
師小結(jié):用拼和折的方法都能將三角形的三個內(nèi)角轉(zhuǎn)化成一個平角,從而借助我們學(xué)過的平角知識證明三角形的內(nèi)角和確實是180°,你們真會動腦筋!
。4)推算法
、侔岩粋長方形沿對角線分成兩個完全一樣的直角三角形。因為長方形的內(nèi)角和是360°,所以一個直角三角形的內(nèi)角和等于180°。(課件演示過程)
師:直角三角形的內(nèi)角和已經(jīng)證明了是180°,現(xiàn)在我們只要能證明:銳角三角形和鈍角三角形的內(nèi)角和也是180°就可以了。
課件演示
、谝粋銳角三角形,從頂點往下畫一條垂線,將三角形分為兩個直角三角形,因為我們已經(jīng)知道直角三角形的內(nèi)角和是180°,所以兩個直角三角形的度數(shù)和就是360°,減去兩個直角的和180°,就是要證明的三角形內(nèi)角和,肯定是180°。
4.總結(jié)提煉
師:孩子們,剛才我們通過“量——拼——折——推”的方法分類驗證了三角形的內(nèi)角和是( )度?
現(xiàn)在可以下結(jié)論了嗎?
(板書:三角形三個內(nèi)角和等于180°。)
師:那在“三角形的爭吵中”誰是對的?
。ㄟ_成目標(biāo)3。此環(huán)節(jié)讓學(xué)生通過“量——拼——折——推”的方法分類驗證了三角形的內(nèi)角和是180度。此環(huán)節(jié)充分體現(xiàn)了學(xué)生學(xué)習(xí)的主動性。)
。ㄋ模├萌切蝺(nèi)角和是180解決問題
1、看圖,求出未知角的度數(shù)。
2、書本85頁“做一做”
在一個三角形中,∠1=140。,∠3=25。,求∠2的度數(shù)。
。ㄟ_成目標(biāo)3和目標(biāo)4:能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過“做一做”達成目標(biāo)3和目標(biāo)4.)
三、目標(biāo)達成檢測方案:
1、求出三角形各個角的度數(shù)。
2、埃及金字塔建于4500年前的埃及古王朝時期,它是用巨大石塊修砌成的方錐形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各異,外表有四個側(cè)面,每個側(cè)面都是等腰三角形。人們量得這個三角形的一個底角是64度。
四、課堂小結(jié),提升認(rèn)識
同學(xué)們,這節(jié)課你有哪些收獲?我們是怎樣得到“三角形內(nèi)角和等于180度”這個結(jié)論的?
師:是啊,今天咱們不但知道了三角形的內(nèi)角和是180°,更重要的是我們經(jīng)歷了探究三角形內(nèi)角和的驗證方法。咱們從猜想出發(fā),經(jīng)過驗證(用量、拼、折、推等)得到了結(jié)論并利用結(jié)論解決了一些問題。孩子們,其實我們在不知不覺中已經(jīng)走了數(shù)學(xué)家的探究歷程……希望同學(xué)們在今后的學(xué)習(xí)中大膽應(yīng)用,勇于創(chuàng)新,做最棒的自己
三角形的內(nèi)角和教案9
教學(xué)內(nèi)容:
新課程實驗教科書小學(xué)數(shù)學(xué)四年級下冊85頁例5。
設(shè)計思路:
遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設(shè)計的主要特點之一。先讓學(xué)生思考直角三角形的另外兩個角是什么角,再設(shè)疑讓學(xué)生判斷一個三角形中有兩個角是直角,引出課題。接著讓學(xué)生猜想是不是所有的三角形的內(nèi)角和是180°。學(xué)生通過用量的方法得出三角形的內(nèi)角和大約是180°(存在誤差),再引導(dǎo)學(xué)生通過剪拼、折拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。接著引導(dǎo)學(xué)生理解將一個長方形按對角線剪成兩個直角三角形,讓學(xué)生發(fā)現(xiàn)可以用360度除以2推算所有直角三角形的內(nèi)角和是180度。這一系列活動潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,培養(yǎng)學(xué)生科學(xué)試驗的態(tài)度,培養(yǎng)學(xué)生的統(tǒng)計觀念。接著向?qū)W生滲透數(shù)學(xué)文化。最后讓學(xué)生運用結(jié)論解決實際問題,練習(xí)的安排上,注意練習(xí)層次,共安排三個層次,逐步加深。整堂課讓學(xué)生通過小組合作學(xué)習(xí),經(jīng)歷探究知識的過程,明白解決問題策略的多樣化。培養(yǎng)學(xué)生的空間觀念,發(fā)展合情推理能力和初步的演繹推理能力。讓學(xué)生體驗數(shù)學(xué)學(xué)習(xí)的快樂。
教材分析:
依據(jù)是《新課程標(biāo)準(zhǔn)》(實驗稿)。新課標(biāo)中,分兩個階段分層寫進了“三角形內(nèi)角和”:1、在第二學(xué)段“幾何與圖形”第七條中說:“通過觀察、操作了解三角形內(nèi)角和是180°”;2、在第三學(xué)段“空間與圖形”第4條第3點中說:“利用同位角、對角相等的基本事實證明三角形的內(nèi)角和定理。
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后進行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
學(xué)生分析
。、四年級的學(xué)生已經(jīng)有了探索三角形內(nèi)角和的知識(或技能)基礎(chǔ)。如掌握了銳角、直角、鈍角、平角的概念;知道直角或平角的度數(shù)、會用量角器度量角的度數(shù)。認(rèn)識長方形、正方形,知道他們的四個角都是直角,認(rèn)識了三角形,知道了三角形根據(jù)角分,有銳角三角形、直角三角形和鈍角三角形。已經(jīng)知道了等腰三角形和正三角形。
。、學(xué)生的起點。已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。
教學(xué)目標(biāo):
1、通過量、剪、拼等方法,探索和發(fā)現(xiàn)三角形內(nèi)角和是180°。
2、在操作活動中,培養(yǎng)學(xué)生的合作能力、動手實踐能力,發(fā)展學(xué)生的空間觀念。并運用新知識解決問題。
3.使學(xué)生有科學(xué)實驗態(tài)度,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣,體驗數(shù)學(xué)學(xué)習(xí)成功的喜悅。
教學(xué)重點:引導(dǎo)學(xué)生發(fā)現(xiàn)三角形內(nèi)角和是180°
教學(xué)難點:用不同方法驗證三角形的內(nèi)角和是180°
教具學(xué)具準(zhǔn)備:課件、學(xué)生準(zhǔn)備不同類型的三角形各一個,長方形。剪刀、量角器。
教學(xué)過程:
一、創(chuàng)設(shè)情景,引出問題
導(dǎo)語
師:第幾次來這里上課?在這里上課和在教室有什么不一樣嗎?
(交代話筒的分布)
今天有很多聽課的老師都想了解你,能向老師介紹你自己嗎?
你介紹了自己的姓名
你介紹的內(nèi)容更豐富了,有姓名、歲數(shù)。
你的聲音很響亮,有更響亮的嗎?
看來我們虹橋鎮(zhèn)一小四一班的同學(xué)真的很棒。
可以上課了嗎?上課。同學(xué)們好
我們先來猜個謎語,請大家齊讀一遍。
猜謎語:(課件)
形狀似座山,穩(wěn)定性能堅
三竿首尾連,學(xué)問不簡單(打一幾何圖形)三角形(板書)
1、小游戲
猜三角形(課件)
師:這個三角形的一部分被長方形給遮住了,你知道這是什么三角形嗎?
師:被遮住的兩個角是什么角?
生:兩個角都是銳角。
師:如果有人說被遮住的兩個角中還有一個角是直角,你們覺得對嗎?為什么?
。ㄟ@個環(huán)節(jié)容易忘記)
生:在一個三角形里面不可能有兩個直角
生:這樣就不是三角形了
生:三角形的內(nèi)角和是180度,如果有兩個角是直角,另一個角不是沒有度數(shù)了。
。ㄗ寣W(xué)生拿出直角三角板上來說明三角形的內(nèi)角和是180°)
2、引出課題
這就是三角形里角的奧秘,這節(jié)課我們就來研究有關(guān)三角形角的知識”三角形內(nèi)角和“。(板書課題)
二、探究
1、三角形的內(nèi)角、內(nèi)角和
。1)三角形內(nèi)角(課件)
三角形里面的三個角都是三角形的內(nèi)角。為了方便研究我們把每個三角形都標(biāo)上內(nèi)角∠1、內(nèi)角∠2、內(nèi)角∠3。
(2)三角形內(nèi)角和
師:內(nèi)角和指的是什么?
生:三角形的三個角的度數(shù)的和,就是三角形的內(nèi)角和。
。ǘ嘧寧讉學(xué)生說一說)
2、猜一猜
師:這個三角形的內(nèi)角和是多少度?
生:180°
師:是不是所有的三角形的內(nèi)角和都是180°呢?你能肯定嗎?
生:是。
生:不是
預(yù)設(shè)1師:大家意見不統(tǒng)一,我們得想個辦法驗證三角形的內(nèi)角和是多少?可以用什么方法驗證呢?
預(yù)設(shè)2師:可以用什么方法驗證三角形的內(nèi)角和是180度。
生:量一量。(量角器)
師:用量角器度量,你能說的更明白一些嗎?
3、量一量
。1)出示要求(課件)
師:(我在信封里為大家準(zhǔn)備了三個不同的三角形和一張表格)三個三角形和一張表格,四人小組合作,你們覺得怎樣分工度量的速度會最快?
生:每一個同學(xué)量一個三角形的內(nèi)角度數(shù)另一個人記錄。
師:量的同學(xué):量出的每個角的度數(shù),把每個角的度數(shù)寫在三角形里面。三個角的度數(shù)都量好后,再匯報給記錄的同學(xué)登記。(還要在實物投影上例舉)
師:記錄的同學(xué):要監(jiān)督小組其他同學(xué)量的是不是很準(zhǔn)確、真實,不能改掉小組成員度量出來的數(shù)據(jù)。(開始)
量一量、算一算不同類型三角形內(nèi)角和各是多少度?
(2)小組合作探究
。ù蟛糠值耐瑢W(xué)已經(jīng)量好了。沒有量好的小組,先停下來。讓我們一起來分享其他同學(xué)的測量成果。我這里收集到了兩個小組的測量記錄表,這張是那個小組的?請這個小組的組長帶上三個三角形上來給大家介紹他們組的測量情況。請你給大家介紹你們組測量的三角形的形狀,每個角的.度數(shù)和內(nèi)角和是多少?)學(xué)生匯報的時候教師板書。
。3)匯報交流
測量記錄表
三角形的形狀
每個內(nèi)角的度數(shù)
三個內(nèi)角和
。▽嵨锿队埃┻x擇有代表性的作品展示
學(xué)生的匯報中可能會出現(xiàn)答案不是惟一的情況。如180°179°181°等
。ò鍟
。ǚ謩e對這幾個數(shù)進行統(tǒng)計)
我們來統(tǒng)計測量出來是多少度的同學(xué)最多。例如、179°的有2人,180°的有13人,181的有1人等等。(度量結(jié)果是181度的同學(xué)請舉手,179度的請舉手,還有不一樣的嗎?)
師:觀察這些測量結(jié)果你能發(fā)現(xiàn)什么?
生:都在180°左右。
生:從大到小的順序。
4、剪拼、折拼
。1)剪拼、撕拼
。▽W(xué)生的注意力要集中)
預(yù)設(shè)1師:用度量的方法驗證,得到的結(jié)果不統(tǒng)一,有沒有比度量更精確的驗證方法?(讓學(xué)生多思考),也就是不用度量你能用別的方法驗證嗎?
預(yù)設(shè)2師:不著急,看黑板(板書),內(nèi)角和就是(~~)
生:就是把內(nèi)角合并在一起。
度量的驗證方法是分別量出每個角的度數(shù),分成單個研究。
如果把三個角合在一起考慮呢?你還有什么驗證方法?
求三角形內(nèi)角和就是把三角形的三個角和起來考慮問題,三個角和起來是什么角?三個角和起來是多少度的角,你有辦法嗎?
預(yù)設(shè)3師:如果三角形的內(nèi)角和是180度,180度的角就是我們以前學(xué)過的平角
把三角形的三個角拼起來是不是一個平角?
有什么方法能把三角形的三個內(nèi)角合并在一起?
預(yù)設(shè)4師:我在電腦里收索一個驗證方法。(課件演示)
生:把三角形的三個角剪下來,再拼成一個角。
師:你能說的更明白一些嗎?
讓學(xué)生在實物投影上演示(可以把剪下來的三個角,用固體膠固定在白色的長方形卡紙上。)
師:你們覺得他得方法可行嗎?
要求
請大家四人小組合作,用他的方法驗證。
全班小組操作
大部分的小組已經(jīng)拼好了,還沒拼好的小組先停一停。我們一起來分享其他小組的驗證結(jié)果
匯報交流
預(yù)設(shè)1師:(把學(xué)生的作品展示)把三個角拼在一起你們有什么發(fā)現(xiàn)?
。隳芸闯鲞@是用什么三角形拼成的?為什么?三個角拼在一起你有什么發(fā)現(xiàn)?)
預(yù)設(shè)2讓學(xué)生上來介紹
師:你怎么做?發(fā)現(xiàn)了什么?(課堂紀(jì)律)
讓學(xué)生展示不同類型的三角形拼成一個平角。說明三角形的內(nèi)角和是180°
。ò鍟杭羝匆粋平角)
課件演示
師:這種驗證方法是誰第一個發(fā)現(xiàn)的,我們用掌聲來祝賀他。
(2)折拼
師:用剪拼的方法是比較精確,美中不足就是把三角形給剪了或是撕了,有沒有更好驗證方法?
預(yù)設(shè)1生:用折的方法
小組合作把剩下的一個三角形的折成一個平角。
展示
師:要把三角形的三個角折成一個平角靠我們現(xiàn)在的經(jīng)驗是有點難。看電腦是怎樣折的。
課件演示
師:先要找到兩條邊的中點,用線連接起來,再按這條線折起來。再把另外的兩個角折起來就可以了。
預(yù)設(shè)2學(xué)生不會想到用折的方法。
師:我在電腦里收索到折的方法,請同學(xué)們看一看他是怎么折的(課件演示)
5、計算,推理(看學(xué)生基礎(chǔ)選用)
A、將一個長方形按對角線剪成兩個完全一樣的直角三角形。因為長方形的四個角都是直角,長方形的內(nèi)角和是360°,所以剪成后的直角三角形的內(nèi)角和是180°
。ɑ丶乙院,同學(xué)們可以剪一個三角形折一折,我在信封里還為大家準(zhǔn)備一個長方形彩色卡紙,如果將一個長方形剪成兩個直角個三角形)
師:你發(fā)現(xiàn)了什么?
生:直角三角形的內(nèi)角和是180°
師:你能說得更明白一些嗎?
師:你能算出這個直角三角形的內(nèi)角和嗎?
生:90°乘4等于360°,在把360°除以2就等于180°(板書)
師:我們給這種驗證方法娶個名字?(推算)
師:這個直角三角形可以用推算的方法驗證,是不是所有的直角三角形都可以用這種方法推算呢?
。ㄕn件演示)
師:推算的驗證方法是誰先發(fā)現(xiàn)的,我們也對他表示祝賀。
小結(jié)
師:這節(jié)課通過我們班同學(xué)共同合作,我們用了幾種驗證方法。
師:撕拼和折拼方法有什么相同點?(注意說話有說服力)
生:都是把三角形的三個角拼成一個平角。
師:為什么度量的方法會得到不同的結(jié)果?
師:可能是度量的時候有誤差,如果準(zhǔn)確測量結(jié)果就是180°(把不是180°的數(shù)據(jù)擦掉)
數(shù)學(xué)文化
師:除了我們這節(jié)課大家想到的方法,還有很多方法也能驗證三角形的內(nèi)角和是180°到初中我們還要更嚴(yán)密的方法證明三角形的內(nèi)角和是180°早在300多年前就有一個科學(xué)家,他在12歲時就驗證了任何三角形的內(nèi)角和都是180°(課件)帕斯卡(BlaisePascal,1623~1662),法國數(shù)學(xué)家、物理學(xué)家、近代概率論的奠基者。早在300多年前這位法國著名的科學(xué)家就已經(jīng)發(fā)現(xiàn)了任何三角形的內(nèi)角和是180度,而他當(dāng)時才12歲。
6、解疑
為什么在一個三角形中不可有兩個角是直角或兩個角是鈍角?
生:因為三角形的內(nèi)角和是180°
反思:在活動中,我沒有像過去那樣告訴學(xué)生怎樣去做,讓學(xué)生做機械的操作員,也不是隨意放開,讓學(xué)生盲目地做,而是把放與引有機結(jié)合,鼓勵學(xué)生積極開動腦筋,從不同途徑探究解決問題的方法,同時給予學(xué)生足夠的時間和空間,不斷讓每個學(xué)生自己參與,而且注重讓學(xué)生在經(jīng)歷觀察、操作、分析、推理和想像活動過程中解決問題,發(fā)展空間觀念和論證推理能力。
三、應(yīng)用三角形的內(nèi)角和解決問題
我們就用這個結(jié)論來解決問題
1.看圖求出未知角的度數(shù)。
180°-55°-65°180°-(55°+65°)
。125°-65°=180°-120°
=60°=60°
剛才是已知兩個內(nèi)角的度數(shù),求另一個內(nèi)角的度數(shù)。如果只告訴你一個內(nèi)角的度數(shù),你會求出另外兩個內(nèi)角的度數(shù)嗎?如果一個內(nèi)角的度數(shù)也不告訴你,你能知道三個內(nèi)角的度數(shù)嗎?
2、請說出下列每個三角形每個角的度數(shù)。
180°÷3=60°180°-96°=84°180°-90°-40=50°
84°÷2=42°90°-40°=50°
3、判斷(請大家用手語來判斷)
(1)一個三角形的三個內(nèi)角度數(shù)是:80°、75°、24°。()
。2)大三角形比小三角形的內(nèi)角和大。()
教師準(zhǔn)備兩個大小不一樣角度一樣的三角形
。3)兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和是360°()
師:你能改正嗎?
生:兩個小的三角形拼成一個大四邊形,四邊形的內(nèi)角和是360。
。(zhǔn)備兩個三角形剛好可以拼成四邊形)
師:小三角形的兩個直角角已經(jīng)不是大三角形的內(nèi)角,要減去180°所以大三角形的內(nèi)角和是180°
4、求四邊形、五邊形、六邊形的內(nèi)角和
下課的時間就要到了,我們來一個挑戰(zhàn)題。你們敢接受挑戰(zhàn)嗎?
圖形
名稱
三角形
四邊形
五邊形
六邊形
有幾個三角形
1
內(nèi)角和
180°
如果要求10邊形的內(nèi)角和,你會求嗎?你有什么發(fā)現(xiàn)?
四、回顧
這節(jié)課你有什么收獲?我們是怎樣研究三角形的內(nèi)角和是180°?
師:這節(jié)課我們分別用度量、撕拼、折拼推算個的方法對猜想進行驗證,最后運用三角形內(nèi)角和是180°的知識解決問題。如果給你重新選擇,你會選擇什么方法驗證?
我們用360度除以2推算出所有直角三角形的內(nèi)角和是180度,你會應(yīng)用直角三角形的內(nèi)角和是180度,推算這個大銳角三角形的內(nèi)角和嗎?(課件)
。4)、一個銳角三角形、鈍角三角形分成兩個直角三角形。也可以推出銳角三角形的內(nèi)角和是180°
板書
三角形內(nèi)角和180°
猜想實驗驗證
度量180°179°181°182°183°
剪拼一個平角
折拼
三角形的內(nèi)角和教案10
教學(xué)目標(biāo)
⑴探索并發(fā)現(xiàn)三角形的內(nèi)角和是180°,能利用這個知識解決實際問題。
、茖W(xué)生在經(jīng)歷觀察、猜測、驗證的過程中,提升自身動手動腦及推理、歸納總結(jié)的能力。
、窃趨⑴c學(xué)習(xí)的過程中,感受數(shù)學(xué)獨特的魅力,獲得成功體驗,并產(chǎn)生學(xué)習(xí)數(shù)學(xué)的積極情感。
教學(xué)重點:檢驗三角形的內(nèi)角和是180°。
教學(xué)難點:引導(dǎo)學(xué)生通過實驗探究得出三角形的內(nèi)角和是180度。
教學(xué)環(huán)節(jié):問題情境與
教師活動:學(xué)生活動媒體應(yīng)用設(shè)計意圖
導(dǎo)入新課:
一、復(fù)習(xí)舊知,導(dǎo)入新課。
1、復(fù)習(xí)三角形分類的知識。
師出示三角形,生快速說出它的名稱。
2、什么是三角形的內(nèi)角?
我們通常所說的角就是三角形的內(nèi)角。為了便于稱呼,我們習(xí)慣用∠A、∠B、∠c來表示。
什么是三角形的內(nèi)角和?
三角形“三個內(nèi)角的度數(shù)之和”就是三角形的內(nèi)角和。用一個含有∠A、∠B、∠c的式子來表示應(yīng)該如何寫?∠A+∠B+∠c。
3、今天這節(jié)課啊我們就一起來研究三角形的內(nèi)角和。(揭題:三角形的內(nèi)角和)
由三角形的內(nèi)角引出三角形的'內(nèi)角和,“∠A+∠B+∠c”的表示形式形象的體現(xiàn)出三內(nèi)角求和的關(guān)系
二、動手操作,探究新知
1、出示三角板,猜一猜。
師:這個三角形的內(nèi)角和是多少度?熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)
把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。是不是所有的三角形的內(nèi)角和都是180°呢?你能肯定嗎?
我們得想個辦法驗證三角形的內(nèi)角和是多少?可以用什么方法驗證呢?
3.學(xué)生測量
4.匯報的測量結(jié)果
除了我們這節(jié)課大家想到的方法,還有很多方法也能驗證三角形的內(nèi)角和是180°到初中我們還要更嚴(yán)密的方法證明三角形的內(nèi)角和是180°
5、鞏固知識。
一個三角形中能不能有兩個直角?能不能有2個鈍角?
環(huán)節(jié):
三、應(yīng)用所學(xué),解決問題。
1、基礎(chǔ)練習(xí)(課本第68頁做一做)
在一個三角形中,∠1=140度,∠3=25度,求∠2的度數(shù)。
2、判斷題
(1)大三角形的內(nèi)角和大于180度。()
(2)三角形的內(nèi)角和可能是180度。()
(3)一個三角形中最多只能有一個直角。()
。4)三角形的三個內(nèi)角分別可能是30度,60度,70度。()
3、求出下面三角形各角的度數(shù)。
。1)我三邊相等。
。2)我是等腰三角形,我的頂角是96°。(3)我有一個銳角是40°。
四、總結(jié):這節(jié)課你有什么收獲?
三角形的內(nèi)角和教案11
教學(xué)要求
1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
2.能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。
3.培養(yǎng)學(xué)生動手動腦及分析推理能力。
教學(xué)重點:三角形的內(nèi)角和是180°的規(guī)律。
教學(xué)難點:使學(xué)生理解三角形的內(nèi)角和是180°這一規(guī)律。
教學(xué)用具:每個學(xué)生準(zhǔn)備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備
1.三角形按角的不同可以分成哪幾類?
2.一個平角是多少度?1個平角等于幾個直角?
3.如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。
二、教學(xué)新課
1.投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的.三個內(nèi)角。(板書:內(nèi)角)
2.三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。
3.以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?
4.指名學(xué)生匯報各組度量和計算的結(jié)果。你有什么發(fā)現(xiàn)?
5.大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。
6.剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?
提示學(xué)生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。
7.請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。
8.三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)
9.拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)
10.那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11.老師板書結(jié)論:三角形的內(nèi)角和是180°。
12.一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?
13.出示教材85頁做一做。讓學(xué)生試做。
14.指名匯報怎樣列式計算的。兩種方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、鞏固練習(xí)
1.88頁第9題
這一題是不是只知道一個角的度數(shù)?另一個角是多少度,從哪看出來的?獨立完成,集體訂正。
直角三角形中的一個銳角還可以怎樣算?
2、88頁第10題
、俚妊切斡惺裁刺攸c?(兩底角相等)
、诹惺接嬎 180°-70°-70°=40°或
180°-(70°×2)=40°
2.88頁第10題
、龠B接長方形、正方形一組對角頂點,把長方形、正方形分成兩個什么圖形?
、谝粋三角形的內(nèi)角和是180°,兩個三角形呢?
四、布置作業(yè)
三角形的內(nèi)角和教案12
教學(xué)目標(biāo)
通過猜想、驗證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的過程中進一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計算多邊形內(nèi)角和的公式。
教學(xué)重難點
三角形的內(nèi)角和
課前準(zhǔn)備
電腦課件、學(xué)具卡片
教學(xué)活動
一、計算三角尺三個內(nèi)角的和。
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導(dǎo)學(xué)生說出90度、60度、30度。
出示另一個三角尺,引導(dǎo)學(xué)生分別說出三個角的度數(shù):90度、45度、45度。
提問:請同學(xué)們?nèi)芜x一個三角尺,算出他們?nèi)齻角一共多少度?
學(xué)生計算后指名回答。
師:三角尺三個角的和是180度。
二、自主探索,解決問題
提問:是不是任一個三角形三個角的和都是180度呢?請同學(xué)們在自備本上
任畫一個三角形,量出它們?nèi)齻角分別是多少度,再求出它們的和,然后小組內(nèi)交流。
學(xué)生小組活動,教師了解學(xué)生情況,個別同學(xué)加以輔導(dǎo)。
全班交流:讓學(xué)生分別說出三個角的度數(shù)以及它們的和。
提問:你發(fā)現(xiàn)了什么?
。喝魏我粋三角形三個角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。
三、試一試
要求學(xué)生先計算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說說計算的方法。
教師說明:即使結(jié)果不完全一樣,是因為測量的結(jié)果存在誤差,我們還是以
計算的結(jié)果為準(zhǔn)。
四、鞏固提高
完成想想做做的題目。
第1題
學(xué)生獨立計算,交流算法。要求學(xué)生用量角器量出結(jié)果,和計算的結(jié)果想比較。
第2題
指導(dǎo)學(xué)生看圖,弄清拼成的三角形的三個內(nèi)角指的'是哪三個角。計算三角形三個角的內(nèi)角和,幫助學(xué)生進一步理解:三角形三個內(nèi)角的和是180度。
第3題
通過操作、計算,使學(xué)生認(rèn)識到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會變化的。
第4、5、6
引導(dǎo)學(xué)生運用三角形的分類及三角形內(nèi)角和的有關(guān)知識解決有關(guān)問題,重點培養(yǎng)學(xué)生靈活運用知識解決問題的能力。
三角形的內(nèi)角和教案13
設(shè)計說明
在整個教學(xué)設(shè)計中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去探究、發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探究的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。
遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設(shè)計的主要特點之一。學(xué)生對三角板上每個角的度數(shù)都比較熟悉,從這里入手,先讓學(xué)生算出每塊三角板上三個內(nèi)角的和是180°,進而引發(fā)學(xué)生猜想:其他三角形的內(nèi)角和也是180°嗎?接著引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差)。再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn)各類三角形的三個內(nèi)角都可以拼成一個平角。然后利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列的活動潛移默化地向?qū)W生滲透了轉(zhuǎn)化的數(shù)學(xué)思想,為后面的學(xué)習(xí)奠定了必要的基礎(chǔ)。最后安排了三個層次的練習(xí),逐層加深。在練習(xí)的過程中,既激發(fā)了學(xué)生主動解題的積極性,拓展了學(xué)生的思維,又兼顧到了智力水平發(fā)展較快的學(xué)生。
課前準(zhǔn)備
教師準(zhǔn)備 多媒體課件
學(xué)生準(zhǔn)備 三角板
教學(xué)過程
⊙復(fù)習(xí)導(dǎo)入
師:請同學(xué)們回憶一下,我們以前學(xué)過哪些平面圖形?(長方形、正方形、平行四邊形、三角形等)
師:這些是我們早已認(rèn)識的平面圖形,那么你們知道長方形有什么特征嗎?(學(xué)生匯報:長方形的對邊相等,有四個角,且四個角都是直角)
師:這四個角一共是多少度?(360°)
師:你是怎么算的?(90°×4=360°)
師:請看大屏幕。(課件演示三條線段圍成三角形的過程)三條線段圍成三角形后,在三角形內(nèi)形成了三個角(課件分別顯示出三個角的弧線),我們把三角形里面的這三個角叫做三角形的內(nèi)角。
師:通過剛才的回憶,同學(xué)們知道長方形四個內(nèi)角的和是360°,那么三角形的內(nèi)角和又是多少呢?這節(jié)課我們就來探究三角形的內(nèi)角和。(板書課題)
設(shè)計意圖:通過復(fù)習(xí)學(xué)過的平面圖形,喚醒學(xué)生的.認(rèn)知。借助長方形四個角都是直角的特征,學(xué)生通過計算很容易知道長方形的內(nèi)角和是360°,從而質(zhì)疑三角形的內(nèi)角和是多少。這樣以問題情境開始,既豐富了學(xué)生的感官認(rèn)識,又激發(fā)了學(xué)生的探究欲望。
⊙探究新知
1.探究特殊三角形的內(nèi)角和。
師:(課件出示一塊三角板)大家熟悉這塊三角板嗎?請拿出形狀與這塊一樣的三角板,并和同桌互相說一說各個角的度數(shù)。(課件出示由三角板抽象出的三角形)
師:這個三角形三個角的度數(shù)和是多少?(180°)你是怎樣知道的?(90°+45°+45°=180°)
明確:把三角形三個內(nèi)角的度數(shù)合起來就叫做三角形的內(nèi)角和。
師:(課件出示由另一塊三角板抽象出的三角形)這個三角形的內(nèi)角和是多少度?(90°+60°+30°=180°)
師:從剛才兩個三角形內(nèi)角和的計算中你發(fā)現(xiàn)了什么?(這兩個三角形的內(nèi)角和都是180°,且這兩個三角形都是直角三角形)
2.探究一般三角形的內(nèi)角和。
(1)剛才我們探究了直角三角形的內(nèi)角和是180°,那么其他任意三角形的內(nèi)角和又是多少度呢?請大家猜一猜。(大多數(shù)學(xué)生認(rèn)為也是180°)
(2)操作、驗證一般三角形的內(nèi)角和是180°。
師:剛才大多數(shù)同學(xué)認(rèn)為三角形的內(nèi)角和是180°,但也有幾個同學(xué)不敢肯定,那么我們用什么方法來驗證這個猜想是否正確呢?
、傩〗M合作,探究驗證方法。
師:請每位同學(xué)先獨立思考,然后把你的想法在小組內(nèi)交流,看一看哪個小組想出的方法最多。
、诮涣鲄R報。
預(yù)設(shè)
組1:我們小組用量角器把三角形的三個內(nèi)角的度數(shù)分別量出來,再加起來看一看是不是等于180°。
組2:我們小組猜想三角形的內(nèi)角和是180°,而平角的度數(shù)也是180°,如果三角形的三個內(nèi)角剛好能拼成一個平角,那么就說明三角形的內(nèi)角和是180°。所以我們小組把三角形的三個內(nèi)角剪下來,拼一拼,看一看能不能拼成一個平角。
、蹌邮植僮鳎炞C猜想。
師:請同學(xué)們選擇一種你喜歡的方法來驗證我們剛才的猜想,驗證完,將你的結(jié)論在小組內(nèi)交流。(出示課堂活動卡,教師巡視,參與各小組的驗證活動,并給予適當(dāng)?shù)闹笇?dǎo))
師小結(jié):大家剛才量出來的結(jié)果或拼出來的結(jié)果都在180°左右,其實三角形的內(nèi)角和就是180°,因為在測量或操作的過程中會產(chǎn)生誤差,所以數(shù)據(jù)會有一些偏差。
3.得出結(jié)論。
師:根據(jù)上面的驗證,我們可以得出一個怎樣的結(jié)論?(三角形的內(nèi)角和是180°,教師板書:三角形的內(nèi)角和是180°)
設(shè)計意圖:學(xué)生通過操作、思考、反饋等過程,真正經(jīng)歷了有效的探究活動,先由直角三角形算出其內(nèi)角和,再用猜想、操作、驗證等方法推導(dǎo)出一般三角形的內(nèi)角和,最后歸納得出所有三角形的內(nèi)角和都是180°。在這個過程中,學(xué)生不僅體會到了數(shù)學(xué)學(xué)習(xí)中歸納的思想方法,還感受到了數(shù)學(xué)與生活的密切聯(lián)系。
三角形的內(nèi)角和教案14
教學(xué)目標(biāo):
1、知識目標(biāo):通過測量、拼、折疊等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°;已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
2、能力目標(biāo):通過討論爭辯、操作、推理等培養(yǎng)學(xué)生的思維能力和解決問題的能力;培養(yǎng)學(xué)生的空間觀念,使學(xué)生的創(chuàng)新能力得到發(fā)展;使學(xué)生初步掌握由特殊到一般的邏輯思辨方法和先猜想后驗證的研究問題的方法。
3、情感目標(biāo):培養(yǎng)學(xué)生的合作精神和探索精神;培養(yǎng)學(xué)生運用數(shù)學(xué)的意識。
教學(xué)重、難點:
掌握三角形的內(nèi)角和是180°。驗證三角形的內(nèi)角和是180°。
學(xué)生分析:
在上學(xué)期學(xué)生已經(jīng)掌握了角的分類及度量問題。在本課之前,學(xué)生又研究了三角形的分類。這些都為進一步研究三角形內(nèi)角和作了知識儲備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關(guān)系,是進一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。
教學(xué)流程:
一、創(chuàng)設(shè)情境,激發(fā)興趣
。ㄕn件出示:兩個三角形爭論,大的對小的說,我的內(nèi)角和比你大。)
。▽W(xué)生小聲議論著,爭論著。)
師:同學(xué)們,你們能不能幫助大三角形和小三角形解決這個問題啊?
生:可以把這兩個三角形的內(nèi)角比一比。
生:它們不是一個角在比較,可怎么比呀?
生:我們先畫出一個大三角形,再畫一個小三角形。分別量一量這兩個三角形三個內(nèi)角的度數(shù),這樣就知道誰的內(nèi)角和大,誰的內(nèi)角和小啦。
師:那好,我們今天就來研究“三角形的內(nèi)角和”。(板書課題。)
【設(shè)計意圖:通過多媒體出示,引起學(xué)生興趣,使學(xué)生想探索大、小三角形的內(nèi)角和到底誰大?】
二、動手操作,探索新知
1、初步感知。
師讓學(xué)生分別畫出不同形狀的三角形。學(xué)生用量角器測量三角形三個內(nèi)角的度數(shù),并做著記錄,并統(tǒng)一填表格。(表格略。)
生匯報測量的結(jié)果:內(nèi)角和約等于180°。
師啟發(fā)學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和180°。(師板書:三角形的內(nèi)角和是180°。)
【設(shè)計意圖:通過這種方法可以得出準(zhǔn)確的結(jié)論,也容易被學(xué)生理解和接受?赡艹霈F(xiàn)問題:用測量的方法得到的結(jié)果不是剛好180°。使學(xué)生明白是因為測量存在誤差的緣故!
2、用拼角法驗證。
師:剛才同學(xué)們發(fā)現(xiàn),三角形的內(nèi)角和約等于180°,那么到底是不是這樣呢?
生:我們手里有一些三角形,可以動手拼一拼。
生:還可以剪一剪。
師:那同學(xué)們就開始吧!
。▽W(xué)生動手進行拼、剪、折等方法,檢驗三角形內(nèi)角和的度數(shù)。)
生:銳角三角形的內(nèi)角可以拼成一個平角。因為平角是180°,所以銳角三角形的三個內(nèi)角和是180°。
生:我把一個直角三角形的三個內(nèi)角剪下來,拼成了一個平角,所以直角三角形的三個內(nèi)角和也是180°。
生:鈍角三角形的內(nèi)角和也是180°。
。◣煱鍟喝切蔚膬(nèi)角和是180°。)
【設(shè)計意圖:使學(xué)生明確,因為全面研究了直角三角形、銳角三角形和鈍角三角形這三類三角形的內(nèi)角和,所以可以得出“三角形的內(nèi)角和等于180°”這一結(jié)論。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要。】
三、鞏固新知,拓展應(yīng)用
1.出示題目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度數(shù)。
2.已知∠1、∠2、∠3是三角形的三個內(nèi)角,猜一猜下面的三角形各是什么三角形?(圖略,分別是銳角、直角、鈍角三角形。)學(xué)生猜后,教師抽去遮蓋的紙,進行驗證。
通過以上的練習(xí)使學(xué)生對三角形內(nèi)角和的應(yīng)用有個初步認(rèn)識,并積累解決問題的經(jīng)驗。
3.師:(出示一個大三角形)它的內(nèi)角和是多少度?
生:180 °。
師:(出示一個很小的三角形)它的內(nèi)角和是多少度?
生:180 °。
師:(把大三角形平均分成兩份。指均分后的一個小三角形)它的內(nèi)角和是多少度?(生有的答90°,有的答180°。)
師:哪個對?為什么?
生:180°對,因為它還是一個三角形。
師:每個小三角形的度數(shù)是180°,那么這樣的兩個小三角形拼成一個大三角形,內(nèi)角和是多少度?(這時學(xué)生的答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對呢?(學(xué)生臉上露出疑問。經(jīng)過一番激烈的討論探究后,學(xué)生開始舉手回答。)
生:180°。因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。
生:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,比原來兩個三角形少180°,所以大三角形的內(nèi)角和還是180°,不是360°。
師:你真聰明。(課件演示。)
四、小結(jié)
師:同學(xué)們,你們今天學(xué)了“三角形的內(nèi)角和是180°”的'新知識,現(xiàn)在能來幫助大、小三角形進行評判了吧?(生答能。)
師:說一說本節(jié)課的收獲。這節(jié)課你掌握了哪些知識?學(xué)會了哪些研究問題的方法?
五、探究性作業(yè)
求下面幾個多邊形的內(nèi)角和。(圖形略。)
【設(shè)計意圖:通過這樣的練習(xí),培養(yǎng)學(xué)生思維的靈活性、多樣性,使不同層次的學(xué)生得到不同的發(fā)展,體現(xiàn)教學(xué)的層次性!
反思:
1、重視動手操作,讓學(xué)生在探究中收獲知識!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!北竟(jié)課通過量、折、剪、拼等多種活動,使學(xué)生主動探究,找到新舊知識的聯(lián)系,得出研究問題的結(jié)論,有利于學(xué)生培養(yǎng)空間觀念和動手操作能力。
2、小組合作學(xué)習(xí)是新課程倡導(dǎo)的學(xué)習(xí)方式,有利于培養(yǎng)學(xué)生的合作意識、探索能力、團隊精神。我們要從平時抓起,在平常的課堂中開展小組合作學(xué)習(xí),可以是前后四人為一組,深入探究合作學(xué)習(xí)的方法和途徑。這樣學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變才能落到實處,才不會變成某些公開課的擺設(shè)
三角形的內(nèi)角和教案15
尊敬的各位評委老師:
大家好!今天我很高興也很榮幸能有這個機會與大家共同交流,在深入鉆研教材,充分了解學(xué)生的基礎(chǔ)上,我準(zhǔn)備從以下幾個方面進行說課:
一、教材分析
“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,是進一步學(xué)習(xí)幾何的基礎(chǔ)。
二、教學(xué)目標(biāo)
1、知識與技能:明確三角形的內(nèi)角的概念,使學(xué)生自主探究發(fā)現(xiàn)三角形內(nèi)角和等于180°,并運用這一規(guī)律解決問題。
2、過程和方法:通過學(xué)生猜、量、拼、折、觀察等活動,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。
3、情感與態(tài)度:使學(xué)生感受數(shù)學(xué)圖形之美及轉(zhuǎn)化思想,體驗數(shù)學(xué)就在我們身邊。
三、教學(xué)重難點
教學(xué)重點:動手操作、自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,并能進行簡單的運用。
教學(xué)難點:采用多種途徑驗證三角形的內(nèi)角和是180°。
四、學(xué)情分析
通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會量角,部分學(xué)生已經(jīng)知道三角形內(nèi)角和是180°,但不知道怎樣得出這個結(jié)論。
五、教學(xué)法分析
本節(jié)課采用自主探索、合作交流的教學(xué)方法,學(xué)生自主參與知識的構(gòu)建。領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用。
六、課前準(zhǔn)備
1、教師準(zhǔn)備:多媒體課件、三角形教具。
2、學(xué)生準(zhǔn)備:銳、直、鈍角三角形各兩個,量角器、剪刀。
七、教學(xué)過程
。ㄒ唬(chuàng)設(shè)情境,激趣導(dǎo)入
導(dǎo)入:“同學(xué)們,有三位老朋友已經(jīng)恭候我們多時了。“(出示三角形動畫課件),讓學(xué)生依次說出各是什么三角形。
課件分別閃爍三角形三個內(nèi)角,并介紹:“這三個角叫做三角形的內(nèi)角,把三個角的度數(shù)加起來,就是三角形的內(nèi)角和。請學(xué)生畫一個三角形,要求:有兩個直角。為什么不能畫,問題在哪呢?這節(jié)課我們就一起來探究三角形的內(nèi)角和。板書課題。
。ǘ、自主探究、合作交流
1、探索特殊三角形內(nèi)角和
拿出自己的一副三角板,同桌之間互相說一說各個角的度數(shù)。
三角形內(nèi)角和是多少度呢?指名匯報。90°+30°+60°=180°
90°+45°+45°=180°
從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?
2、探索一般三角形的內(nèi)角和
一般三角形的內(nèi)角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們采用小組合作的方式進行探究,看看哪個組的方法多而且富有新意。
3、匯報交流
請小組代表匯報方法。
1)量:你測量的三個內(nèi)角分別是多少度?和呢?(有不同意見)
沒有統(tǒng)一的'結(jié)果,有沒有其他方法?
2)剪―拼:把三角形的三個內(nèi)角剪下來拼在一起,成為一個平角,利用平角是180°這一特點,得出結(jié)論。(學(xué)生嘗試驗證)
3)折拼:學(xué)生邊演示邊匯報。把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角。所以得出三角形的內(nèi)角和是180°。(學(xué)生嘗試驗證)
4)教師課件驗證結(jié)果。
請看屏幕,老師也來驗證一下,是不是和你們的結(jié)果一樣?播放課件。我們可以得到一個怎樣的結(jié)論?
學(xué)生回答后教師板書:三角形的內(nèi)角和是180°
為什么有的小組用測量的方法不能得到180°?(誤差)
4、驗證深化
質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會是一樣嗎?(一樣)
誰能說一說不能畫出有兩個直角的三角形的原因?
(三)、應(yīng)用規(guī)律,解決問題:
揭示規(guī)律后,學(xué)生要掌握知識,就要通過解答實際問題。
1、為了讓學(xué)生積極參與,我設(shè)計了闖關(guān)的活動來激勵學(xué)生的興趣。闖關(guān)成功會獲得小獎?wù)隆?/p>
第一關(guān):基礎(chǔ)練習(xí),要求學(xué)生利用“三角形內(nèi)角和是180°”這一規(guī)律在三角形內(nèi)已知兩個角,求第三個角(課件出示)
第二關(guān),提高練習(xí),①已知等腰三角形的底角,求頂角。②求等邊三角形每個角的度數(shù)是多少。直角三角形已知一個銳角,求另一個。
讓學(xué)生靈活應(yīng)用隱含條件來解決問題,進一步提高能力。
2、小組合作練習(xí),完成相應(yīng)做一做。
。ㄋ模、課堂總結(jié),效果檢測。
一節(jié)成功的好課要有一個好的開頭,更要有一個完美的結(jié)尾,數(shù)學(xué)是使人變聰明的學(xué)科,通過這節(jié)課的學(xué)習(xí),你收獲了什么?學(xué)生們暢所欲言。接下來老師要檢查大家的學(xué)習(xí)效果,學(xué)生完成答題卡,組長評判,集體匯報。
(五)作業(yè)課下繼續(xù)探究三角形,看你有什么新發(fā)現(xiàn)。
八、板書設(shè)計
通過這樣的設(shè)計,使學(xué)生不僅學(xué)到科學(xué)的探究方法,而且體驗到探索的樂趣,使學(xué)生在自主中學(xué)習(xí),在探究中發(fā)現(xiàn),在發(fā)現(xiàn)中成長。以上便是我對《三角形的內(nèi)角和》這一堂課的說課,謝謝大家!
【三角形的內(nèi)角和教案】相關(guān)文章:
《三角形的內(nèi)角和》教案05-17
三角形內(nèi)角和說課稿05-27
三角形的內(nèi)角和教學(xué)設(shè)計01-29
《三角形內(nèi)角和》說課稿范文02-22